CCPortal
DOI10.1038/jes.2013.62
Exposure prediction approaches used in air pollution epidemiology studies: Key findings and future recommendations
Baxter, Lisa K.1; Dionisio, Kathie L.1; Burke, Janet1; Sarnat, Stefanie Ebelt2; Sarnat, Jeremy A.2; Hodas, Natasha3; Rich, David Q.4; Turpin, Barbara J.3; Jones, Rena R.5; Mannshardt, Elizabeth6; Kumar, Naresh7; Beevers, Sean D.8; Oezkaynak, Haluk1
发表日期2013-11-01
ISSN1559-0631
卷号23期号:6页码:654-659
英文摘要

Many epidemiologic studies of the health effects of exposure to ambient air pollution use measurements from central-site monitors as their exposure estimate. However, measurements from central-site monitors may lack the spatial and temporal resolution required to capture exposure variability in a study population, thus resulting in exposure error and biased estimates. Articles in this dedicated issue examine various approaches to predict or assign exposures to ambient pollutants. These methods include combining existing central-site pollution measurements with local-and/or regional-scale air quality models to create new or "hybrid" models for pollutant exposure estimates and using exposure models to account for factors such as infiltration of pollutants indoors and human activity patterns. Key findings from these articles are summarized to provide lessons learned and recommendations for additional research on improving exposure estimation approaches for future epidemiological studies. In summary, when compared with use of central-site monitoring data, the enhanced spatial resolution of air quality or exposure models can have an impact on resultant health effect estimates, especially for pollutants derived from local sources such as traffic (e. g., EC, CO, and NOx). In addition, the optimal exposure estimation approach also depends upon the epidemiological study design. We recommend that future research develops pollutant-specific infiltration data (including for PM species) and improves existing data on human time-activity patterns and exposure to local source (e. g., traffic), in order to enhance human exposure modeling estimates. We also recommend comparing how various approaches to exposure estimation characterize relationships between multiple pollutants in time and space and investigating the impact of improved exposure estimates in chronic health studies.


英文关键词exposure metrics;exposure models;air exchange rate;epidemiology;PM2.5;ambient pollution
语种英语
WOS记录号WOS:000326087900011
来源期刊JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/61723
作者单位1.US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA;
2.Emory Univ, Dept Environm Hlth, Atlanta, GA 30322 USA;
3.Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA;
4.Univ Rochester, Dept Publ Hlth Sci, Rochester, NY USA;
5.New York State Dept Hlth, Albany, NY USA;
6.N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA;
7.Univ Miami, Dept Epidemiol & Publ Hlth, Miami, FL USA;
8.Kings Coll London, MRC HPA Ctr Environm & Hlth, London, England
推荐引用方式
GB/T 7714
Baxter, Lisa K.,Dionisio, Kathie L.,Burke, Janet,et al. Exposure prediction approaches used in air pollution epidemiology studies: Key findings and future recommendations[J]. 美国环保署,2013,23(6):654-659.
APA Baxter, Lisa K..,Dionisio, Kathie L..,Burke, Janet.,Sarnat, Stefanie Ebelt.,Sarnat, Jeremy A..,...&Oezkaynak, Haluk.(2013).Exposure prediction approaches used in air pollution epidemiology studies: Key findings and future recommendations.JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY,23(6),654-659.
MLA Baxter, Lisa K.,et al."Exposure prediction approaches used in air pollution epidemiology studies: Key findings and future recommendations".JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY 23.6(2013):654-659.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Baxter, Lisa K.]的文章
[Dionisio, Kathie L.]的文章
[Burke, Janet]的文章
百度学术
百度学术中相似的文章
[Baxter, Lisa K.]的文章
[Dionisio, Kathie L.]的文章
[Burke, Janet]的文章
必应学术
必应学术中相似的文章
[Baxter, Lisa K.]的文章
[Dionisio, Kathie L.]的文章
[Burke, Janet]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。