CCPortal
DOI10.1080/10962247.2013.816642
Toward verifying fossil fuel CO2 emissions with the CMAQ model: Motivation, model description and initial simulation
Liu, Zhen1; Bambha, Ray P.1; Pinto, Joseph P.2; Zeng, Tao3; Boylan, Jim3; Huang, Maoyi4; Lei, Huimin4,5; Zhao, Chun4; Liu, Shishi6; Mao, Jiafu6; Schwalm, Christopher R.7; Shi, Xiaoying6; Wei, Yaxing6; Michelsen, Hope A.1
发表日期2014-04-03
ISSN1096-2247
卷号64期号:4页码:419-435
英文摘要

Motivated by the question of whether and how a state-of-the-art regional chemical transport model (CTM) can facilitate characterization of CO2 spatiotemporal variability and verify CO2 fossil-fuel emissions, we for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate CO2. This paper presents methods, input data, and initial results for CO2 simulation using CMAQ over the contiguous United States in October 2007. Modeling experiments have been performed to understand the roles of fossil-fuel emissions, biosphere-atmosphere exchange, and meteorology in regulating the spatial distribution of CO2 near the surface over the contiguous United States. Three sets of net ecosystem exchange (NEE) fluxes were used as input to assess the impact of uncertainty of NEE on CO2 concentrations simulated by CMAQ. Observational data from six tall tower sites across the country were used to evaluate model performance. In particular, at the Boulder Atmospheric Observatory (BAO), a tall tower site that receives urban emissions from Denver, CO, the CMAQ model using hourly varying, high-resolution CO2 fossil-fuel emissions from the Vulcan inventory and CarbonTracker optimized NEE reproduced the observed diurnal profile of CO2 reasonably well but with a low bias in the early morning. The spatial distribution of CO2 was found to correlate with NOx, SO2, and CO, because of their similar fossil-fuel emission sources and common transport processes. These initial results from CMAQ demonstrate the potential of using a regional CTM to help interpret CO2 observations and understand CO2 variability in space and time. The ability to simulate a full suite of air pollutants in CMAQ will also facilitate investigations of their use as tracers for CO2 source attribution. This work serves as a proof of concept and the foundation for more comprehensive examinations of CO2 spatiotemporal variability and various uncertainties in the future.


Implications:


Atmospheric CO2 has long been modeled and studied on continental to global scales to understand the global carbon cycle. This work demonstrates the potential of modeling and studying CO2 variability at fine spatiotemporal scales with CMAQ, which has been applied extensively, to study traditionally regulated air pollutants. The abundant observational records of these air pollutants and successful experience in studying and reducing their emissions may be useful for verifying CO2 emissions. Although there remains much more to further investigate, this work opens up a discussion on whether and how to study CO2 as an air pollutant.


语种英语
WOS记录号WOS:000334044800005
来源期刊JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/61481
作者单位1.Sandia Natl Labs, CRF, Livermore, CA 94550 USA;
2.US EPA, Natl Ctr Environm Assessment, Res Triangle Pk, NC 27711 USA;
3.Georgia Dept Nat Resources, Atlanta, GA USA;
4.Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA;
5.Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China;
6.Oak Ridge Natl Lab, Oak Ridge, TN USA;
7.No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Flagstaff, AZ 86011 USA
推荐引用方式
GB/T 7714
Liu, Zhen,Bambha, Ray P.,Pinto, Joseph P.,et al. Toward verifying fossil fuel CO2 emissions with the CMAQ model: Motivation, model description and initial simulation[J]. 美国环保署,2014,64(4):419-435.
APA Liu, Zhen.,Bambha, Ray P..,Pinto, Joseph P..,Zeng, Tao.,Boylan, Jim.,...&Michelsen, Hope A..(2014).Toward verifying fossil fuel CO2 emissions with the CMAQ model: Motivation, model description and initial simulation.JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION,64(4),419-435.
MLA Liu, Zhen,et al."Toward verifying fossil fuel CO2 emissions with the CMAQ model: Motivation, model description and initial simulation".JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION 64.4(2014):419-435.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Zhen]的文章
[Bambha, Ray P.]的文章
[Pinto, Joseph P.]的文章
百度学术
百度学术中相似的文章
[Liu, Zhen]的文章
[Bambha, Ray P.]的文章
[Pinto, Joseph P.]的文章
必应学术
必应学术中相似的文章
[Liu, Zhen]的文章
[Bambha, Ray P.]的文章
[Pinto, Joseph P.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。