Climate Change Data Portal
| DOI | 10.1016/j.rse.2013.09.024 |
| Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements | |
| Barnes, Brian B.1; Hu, Chuanmin1; Cannizzaro, Jennifer P.1; Craig, Susanne E.2; Hallock, Pamela1; Jones, David L.1; Lehrter, John C.3; Melo, Nelson4,5; Schaeffer, Blake A.3; Zepp, Richard6 | |
| 发表日期 | 2014 |
| ISSN | 0034-4257 |
| 卷号 | 140页码:519-532 |
| 英文摘要 | Diffuse attenuation of solar light (K-d, m(-1)) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, K-d can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral reef environments of the Florida Reef Tract. Ultraviolet (UV) light reaching corals can lead to reductions in photosynthetic capacity as well as DNA damage. Unfortunately, field measurements of K-d(UV) lack sufficient spatial and temporal coverage to derive statistically meaningful patterns, and it has been notoriously difficult to derive K-d in optically shallow waters from remote sensing due to bottom contamination. Here we describe an approach to derive K-d(UV) in optically shallow waters of the Florida Keys using variations in the spectral shape of MODIS-derived surface reflectance. The approach used a principal component analysis and stepwise multiple regression to parsimoniously select modes of variance in MODIS-derived reflectance data that best explained variance in concurrent in situ K-d(UV) measurements. The resulting models for K-d(UV) retrievals in waters 1-30 m deep showed strong positive relationships between derived and measured parameters [e.g., for K-d(305) ranging from 0.28 to 3.27 m(-1); N = 29; R-2 = 0.94]. The predictive capabilities of these models were further tested, also showing acceptable performance [for K-d(305), R2 = 0.92; bias = -0.02 m(-1); URMS = 23%]. The same approach worked reasonably well in deriving the absorption coefficient of colored dissolved organic matter (CDOM) in UV wavelengths [a(g)(UV), m(-1)], as K-d(UV) is dominated by ag(UV). Application of the approach to MODIS data showed different spatial and temporal K-d(305) patterns than the K-d(488) patterns derived from a recently validated semi-analytical approach, suggesting that different mechanisms are controlling K-d in the UV and in the visible. Given the importance of water clarity and light availability to shallow-water flora and fauna, the new K-d(UV) and ag(UV) data products provide unprecedented information for assessing and monitoring of coral reef health, and could further assist ongoing regional protection efforts. (C) 2013 Elsevier Inc All rights reserved. |
| 英文关键词 | Water clarity;Light penetration;Ultra-violet light;Remote sensing;Shallow water;Coral reef |
| 语种 | 英语 |
| WOS记录号 | WOS:000329766200042 |
| 来源期刊 | REMOTE SENSING OF ENVIRONMENT
![]() |
| 来源机构 | 美国环保署 |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/61090 |
| 作者单位 | 1.Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA; 2.Dalhousie Univ, Dept Oceanog, Halifax, NS, Canada; 3.US EPA, Gulf Ecol Div, Natl Hlth & Environm Effects Res Lab, Gulf Breeze, FL USA; 4.Univ Miami, Cooperat Inst Marine & Atmospher Studies, Miami, FL USA; 5.NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA; 6.US EPA, Natl Exposure Res Lab, Athens, GA USA |
| 推荐引用方式 GB/T 7714 | Barnes, Brian B.,Hu, Chuanmin,Cannizzaro, Jennifer P.,et al. Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements[J]. 美国环保署,2014,140:519-532. |
| APA | Barnes, Brian B..,Hu, Chuanmin.,Cannizzaro, Jennifer P..,Craig, Susanne E..,Hallock, Pamela.,...&Zepp, Richard.(2014).Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements.REMOTE SENSING OF ENVIRONMENT,140,519-532. |
| MLA | Barnes, Brian B.,et al."Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements".REMOTE SENSING OF ENVIRONMENT 140(2014):519-532. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。