Climate Change Data Portal
DOI | 10.1038/s41370-017-0009-6 |
Predicting polycyclic aromatic hydrocarbons using a mass fraction approach in a geostatistical framework across North Carolina | |
Reyes, Jeanette M.1; Hubbard, Heidi F.2; Stiegel, Matthew A.3; Pleil, Joachim D.4,5; Serre, Marc L.5 | |
发表日期 | 2018-06-01 |
ISSN | 1559-0631 |
卷号 | 28期号:4页码:381-391 |
英文摘要 | Currently in the United States there are no regulatory standards for ambient concentrations of polycyclic aromatic hydrocarbons (PAHs), a class of organic compounds with known carcinogenic species. As such, monitoring data are not routinely collected resulting in limited exposure mapping and epidemiologic studies. This work develops the log-mass fraction (LMF) Bayesian maximum entropy (BME) geostatistical prediction method used to predict the concentration of nine particle-bound PAHs across the US state of North Carolina. The LMF method develops a relationship between a relatively small number of collocated PAH and fine Particulate Matter (PM2.5) samples collected in 2005 and applies that relationship to a larger number of locations where PM2.5 is routinely monitored to more broadly estimate PAH concentrations across the state. Cross validation and mapping results indicate that by incorporating both PAH and PM2.5 data, the LMF BME method reduces mean squared error by 28.4% and produces more realistic spatial gradients compared to the traditional kriging approach based solely on observed PAH data. The LMF BME method efficiently creates PAH predictions in a PAH data sparse and PM2.5 data rich setting, opening the door for more expansive epidemiologic exposure assessments of ambient PAH. |
英文关键词 | Ambient exposures;PAHs;Bayesian maximum entropy;Mass fraction;Geostatistics |
语种 | 英语 |
WOS记录号 | WOS:000435969100008 |
来源期刊 | JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY |
来源机构 | 美国环保署 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/60823 |
作者单位 | 1.US EPA, ORISE, Res Participat Program, Res Triangle Pk, NC 27711 USA; 2.ICF Int, Fairfax, VA USA; 3.Duke Univ, Med Ctr, Durham, NC USA; 4.US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA; 5.Univ North Carolina Chapel Hill, Dept Environm Sci & Engn, 135 Dauer Dr, Chapel Hill, NC 27599 USA |
推荐引用方式 GB/T 7714 | Reyes, Jeanette M.,Hubbard, Heidi F.,Stiegel, Matthew A.,et al. Predicting polycyclic aromatic hydrocarbons using a mass fraction approach in a geostatistical framework across North Carolina[J]. 美国环保署,2018,28(4):381-391. |
APA | Reyes, Jeanette M.,Hubbard, Heidi F.,Stiegel, Matthew A.,Pleil, Joachim D.,&Serre, Marc L..(2018).Predicting polycyclic aromatic hydrocarbons using a mass fraction approach in a geostatistical framework across North Carolina.JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY,28(4),381-391. |
MLA | Reyes, Jeanette M.,et al."Predicting polycyclic aromatic hydrocarbons using a mass fraction approach in a geostatistical framework across North Carolina".JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY 28.4(2018):381-391. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。