CCPortal
DOI10.1038/s41370-017-0009-6
Predicting polycyclic aromatic hydrocarbons using a mass fraction approach in a geostatistical framework across North Carolina
Reyes, Jeanette M.1; Hubbard, Heidi F.2; Stiegel, Matthew A.3; Pleil, Joachim D.4,5; Serre, Marc L.5
发表日期2018-06-01
ISSN1559-0631
卷号28期号:4页码:381-391
英文摘要

Currently in the United States there are no regulatory standards for ambient concentrations of polycyclic aromatic hydrocarbons (PAHs), a class of organic compounds with known carcinogenic species. As such, monitoring data are not routinely collected resulting in limited exposure mapping and epidemiologic studies. This work develops the log-mass fraction (LMF) Bayesian maximum entropy (BME) geostatistical prediction method used to predict the concentration of nine particle-bound PAHs across the US state of North Carolina. The LMF method develops a relationship between a relatively small number of collocated PAH and fine Particulate Matter (PM2.5) samples collected in 2005 and applies that relationship to a larger number of locations where PM2.5 is routinely monitored to more broadly estimate PAH concentrations across the state. Cross validation and mapping results indicate that by incorporating both PAH and PM2.5 data, the LMF BME method reduces mean squared error by 28.4% and produces more realistic spatial gradients compared to the traditional kriging approach based solely on observed PAH data. The LMF BME method efficiently creates PAH predictions in a PAH data sparse and PM2.5 data rich setting, opening the door for more expansive epidemiologic exposure assessments of ambient PAH.


英文关键词Ambient exposures;PAHs;Bayesian maximum entropy;Mass fraction;Geostatistics
语种英语
WOS记录号WOS:000435969100008
来源期刊JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/60823
作者单位1.US EPA, ORISE, Res Participat Program, Res Triangle Pk, NC 27711 USA;
2.ICF Int, Fairfax, VA USA;
3.Duke Univ, Med Ctr, Durham, NC USA;
4.US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA;
5.Univ North Carolina Chapel Hill, Dept Environm Sci & Engn, 135 Dauer Dr, Chapel Hill, NC 27599 USA
推荐引用方式
GB/T 7714
Reyes, Jeanette M.,Hubbard, Heidi F.,Stiegel, Matthew A.,et al. Predicting polycyclic aromatic hydrocarbons using a mass fraction approach in a geostatistical framework across North Carolina[J]. 美国环保署,2018,28(4):381-391.
APA Reyes, Jeanette M.,Hubbard, Heidi F.,Stiegel, Matthew A.,Pleil, Joachim D.,&Serre, Marc L..(2018).Predicting polycyclic aromatic hydrocarbons using a mass fraction approach in a geostatistical framework across North Carolina.JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY,28(4),381-391.
MLA Reyes, Jeanette M.,et al."Predicting polycyclic aromatic hydrocarbons using a mass fraction approach in a geostatistical framework across North Carolina".JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY 28.4(2018):381-391.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Reyes, Jeanette M.]的文章
[Hubbard, Heidi F.]的文章
[Stiegel, Matthew A.]的文章
百度学术
百度学术中相似的文章
[Reyes, Jeanette M.]的文章
[Hubbard, Heidi F.]的文章
[Stiegel, Matthew A.]的文章
必应学术
必应学术中相似的文章
[Reyes, Jeanette M.]的文章
[Hubbard, Heidi F.]的文章
[Stiegel, Matthew A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。