Climate Change Data Portal
DOI | 10.1371/journal.pone.0109855 |
A Murine Inhalation Model to Characterize Pulmonary Exposure to Dry Aspergillus fumigatus Conidia | |
Buskirk, Amanda D.1; Green, Brett J.1; Lemons, Angela R.1; Nayak, Ajay P.1; Goldsmith, W. Travis2; Kashon, Michael L.3; Anderson, Stacey E.1; Hettick, Justin M.1; Templeton, Steven P.1; Germolec, Dori R.4; Beezhold, Donald H.1 | |
发表日期 | 2014-10-23 |
ISSN | 1932-6203 |
卷号 | 9期号:10 |
英文摘要 | Most murine models of fungal exposure are based on the delivery of uncharacterized extracts or liquid conidia suspensions using aspiration or intranasal approaches. Studies that model exposure to dry fungal aerosols using whole body inhalation have only recently been described. In this study, we aimed to characterize pulmonary immune responses following repeated inhalation of conidia utilizing an acoustical generator to deliver dry fungal aerosols to mice housed in a nose only exposure chamber. Immunocompetent female BALB/cJ mice were exposed to conidia derived from Aspergillus fumigatus wild-type (WT) or a melanin-deficient (Delta alb1) strain. Conidia were aerosolized and delivered to mice at an estimated deposition dose of 1 x 10(5) twice a week for 4 weeks (8 total). Histopathological and immunological endpoints were assessed 4, 24, 48, and 72 hours after the final exposure. Histopathological analysis showed that conidia derived from both strains induced lung inflammation, especially at 24 and 48 hour time points. Immunological endpoints evaluated in bronchoalveolar lavage fluid (BALF) and the mediastinal lymph nodes showed that exposure to WT conidia led to elevated numbers of macrophages, granulocytes, and lymphocytes. Importantly, CD8(+) IL17(+) (Tc17) cells were significantly higher in BALF and positively correlated with germination of A. fumigatus WT spores. Germination was associated with specific IgG to intracellular proteins while Delta alb1 spores elicited antibodies to cell wall hydrophobin. These data suggest that inhalation exposures may provide a more representative analysis of immune responses following exposures to environmentally and occupationally prevalent fungal contaminants. |
语种 | 英语 |
WOS记录号 | WOS:000343662800019 |
来源期刊 | PLOS ONE |
来源机构 | 美国环保署 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/59597 |
作者单位 | 1.NIOSH, Allergy & Clin Immunol Branch, Hlth Effects Lab Div, Ctr Dis Control & Prevent, Morgantown, WV 26505 USA; 2.NIOSH, Pathol & Physiol Res Branch, Hlth Effects Lab Div, Ctr Dis Control & Prevent, Morgantown, WV USA; 3.NIOSH, Biostat & Epidemiol Branch, Hlth Effects Lab Div, Ctr Dis Control & Prevent, Morgantown, WV USA; 4.Natl Inst Environm Hlth Sci, Natl Toxicol Program Div, Toxicol Branch, Res Triangle Pk, NC USA |
推荐引用方式 GB/T 7714 | Buskirk, Amanda D.,Green, Brett J.,Lemons, Angela R.,et al. A Murine Inhalation Model to Characterize Pulmonary Exposure to Dry Aspergillus fumigatus Conidia[J]. 美国环保署,2014,9(10). |
APA | Buskirk, Amanda D..,Green, Brett J..,Lemons, Angela R..,Nayak, Ajay P..,Goldsmith, W. Travis.,...&Beezhold, Donald H..(2014).A Murine Inhalation Model to Characterize Pulmonary Exposure to Dry Aspergillus fumigatus Conidia.PLOS ONE,9(10). |
MLA | Buskirk, Amanda D.,et al."A Murine Inhalation Model to Characterize Pulmonary Exposure to Dry Aspergillus fumigatus Conidia".PLOS ONE 9.10(2014). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。