CCPortal
DOI10.1016/j.watres.2012.12.013
Microbial kinetic model for the degradation of poorly soluble organic materials
Yassine, Mohamad H.1; Suidan, Makram T.2; Venosa, Albert D.3
发表日期2013-03-15
ISSN0043-1354
卷号47期号:4页码:1585-1595
英文摘要

A novel mechanistic model is presented that describes the aerobic biodegradation kinetics of soybean biodiesel and petroleum diesel in batch experiments. The model was built on the assumptions that biodegradation takes place in the aqueous phase according to Monod kinetics, and that the substrate dissolution kinetics at the oil/water interface is intrinsically fast compared to biodegradation kinetics. Further, due to the very low aqueous solubility of these compounds, the change in the substrate aqueous-phase concentration over time was assumed to approaches zero, and that substrate aqueous concentration remains close to the saturation level while the non-aqueous phase liquid (NAPL) is still significant. No former knowledge of the saturation substrate concentration (S-sat) and the Monod half-saturation constant (K-s) was required, as the term S-sat/(K-s + S-sat) in the Monod equation remained constant during this phase. The n-alkanes C10-C24 of petroleum diesel were all utilized at a relatively constant actual specific utilization rate of 0.01-0.02 mg-alkane/mg-biomass-hr, while the fatty acid methyl esters (FAMEs) of biodiesel were utilized at actual specific rates significantly higher with increasing carbon chain length and lower with increasing number of double bonds. The results were found to be in agreement with kinetic, genetic, and metabolic evidence reported in the literature pertaining to microbial decay rates, uptake mechanisms, and the metabolic pathway by which these compounds are assimilated into microorganisms. The presented model can be applied, without major modifications, to estimate meaningful kinetic parameters from batch experiments, as well as near source zone field application. We suggest the estimated actual microbial specific utilization rate (kC) of such materials to be a better measure of the degradation rate when compared to the maximum specific utilization rate (k), which might be orders of magnitude higher than kC and might never be observed in reality. (C) 2012 Elsevier Ltd. All rights reserved.


英文关键词Biodegradation;Monod kinetics;Poorly soluble organics;Biodiesel;Petrodiesel
语种英语
WOS记录号WOS:000315977000008
来源期刊WATER RESEARCH
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/59183
作者单位1.Univ Cincinnati, Environm Engn Program, Sch Energy Environm Biol & Med Engn, Cincinnati, OH 45221 USA;
2.Amer Univ Beirut, Fac Engn & Architecture, Beirut 11072020, Lebanon;
3.US EPA, Cincinnati, OH 45268 USA
推荐引用方式
GB/T 7714
Yassine, Mohamad H.,Suidan, Makram T.,Venosa, Albert D.. Microbial kinetic model for the degradation of poorly soluble organic materials[J]. 美国环保署,2013,47(4):1585-1595.
APA Yassine, Mohamad H.,Suidan, Makram T.,&Venosa, Albert D..(2013).Microbial kinetic model for the degradation of poorly soluble organic materials.WATER RESEARCH,47(4),1585-1595.
MLA Yassine, Mohamad H.,et al."Microbial kinetic model for the degradation of poorly soluble organic materials".WATER RESEARCH 47.4(2013):1585-1595.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yassine, Mohamad H.]的文章
[Suidan, Makram T.]的文章
[Venosa, Albert D.]的文章
百度学术
百度学术中相似的文章
[Yassine, Mohamad H.]的文章
[Suidan, Makram T.]的文章
[Venosa, Albert D.]的文章
必应学术
必应学术中相似的文章
[Yassine, Mohamad H.]的文章
[Suidan, Makram T.]的文章
[Venosa, Albert D.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。