| |||||||
Climate Change Data Portal
DOI | 10.3390/ijerph121215007 |
Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies | |
Chang, Shih Ying1,2; Vizuete, William2; Breen, Michael3; Isakov, Vlad3; Arunachalam, Saravanan1 | |
发表日期 | 2015-12-01 |
ISSN | 1660-4601 |
卷号 | 12期号:12页码:15605-15625 |
英文摘要 | Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NOx, PM2.5, and elemental carbon (EC) during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK), ambient on-road concentration from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level (average bias between -10% to 95%). For pollutants with significant contribution from on-road emission (EC and NOx), the on-road based indoor metric performs the best at the population level (error less than 52%). At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%). For PM2.5, due to the relatively low contribution from on-road emission (7%), STOK-based indoor metric performs the best at both population (error below 40%) and individual level (error below 25%). The results of the study will help future epidemiology studies to select appropriate exposure metric and reduce potential bias in exposure characterization. |
英文关键词 | traffic related air pollution;exposure error;air quality model;space-time kriging;exposure metric;dispersion model |
语种 | 英语 |
WOS记录号 | WOS:000367539000051 |
来源期刊 | INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH (IF:2.468[JCR-2018],2.948[5-Year]) |
来源机构 | 美国环保署 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/58742 |
作者单位 | 1.Univ N Carolina, Inst Environm, Chapel Hill, NC 27517 USA; 2.Univ N Carolina, Dept Environm Sci & Engn, Chapel Hill, NC 27599 USA; 3.US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA |
推荐引用方式 GB/T 7714 | Chang, Shih Ying,Vizuete, William,Breen, Michael,et al. Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies[J]. 美国环保署,2015,12(12):15605-15625. |
APA | Chang, Shih Ying,Vizuete, William,Breen, Michael,Isakov, Vlad,&Arunachalam, Saravanan.(2015).Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies.INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH,12(12),15605-15625. |
MLA | Chang, Shih Ying,et al."Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies".INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 12.12(2015):15605-15625. |
条目包含的文件 | ||||||
条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。