CCPortal
DOI10.1021/acs.est.6b02160
Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing
Cashman, Sarah A.1; Meyer, David E.2; Edelen, Ashley N.3; Ingwersen, Wesley W.2; Abraham, John P.2; Barrett, William M.2; Gonzalez, Michael A.2; Randall, Paul M.2; Ruiz-Mercado, Gerardo2; Smith, Raymond L.2
发表日期2016-09-06
ISSN0013-936X
卷号50期号:17页码:9013-9025
英文摘要

Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically applied to LCIs on a case by-case basis. As linked open data becomes more prevalent, it may be possible to automate LCI using data mining by establishing a reproducible approach for identifying, extracting, and processing the data. This work proposes a method for standardizing and eventually automating the discovery and use of publicly available data at the United States Environmental Protection Agency for chemical-manufacturing LCI. The method is developed using a case study of acetic acid. The data quality and gap analyses for the generated inventory found that the selected data sources can provide information with equal or better reliability and representativeness on air, water, hazardous waste, on-site energy usage, and production volumes but with key data gaps including material inputs, water usage, purchased electricity, and transportation requirements. A comparison of the generated LCI with existing data revealed that the data mining inventory is in reasonable agreement with existing data and may provide a more comprehensive inventory of air emissions and water discharges. The case study highlighted challenges for current data management practices that must be overcome to successfully automate the method using semantic technology. Benefits of the method are that the openly available data can be compiled in a standardized and transparent approach that supports potential automation with flexibility to incorporate new data sources as needed.


语种英语
WOS记录号WOS:000382805800012
来源期刊ENVIRONMENTAL SCIENCE & TECHNOLOGY
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/58405
作者单位1.Eastern Res Grp, 110 Hartwell Ave, Lexington, MA 02421 USA;
2.US EPA, Natl Risk Management Res Lab, 26 West Martin Luther King Dr, Cincinnati, OH 45268 USA;
3.US EPA, Off Res & Dev, ORISE, 26 West Martin Luther King Dr, Cincinnati, OH 45268 USA
推荐引用方式
GB/T 7714
Cashman, Sarah A.,Meyer, David E.,Edelen, Ashley N.,et al. Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing[J]. 美国环保署,2016,50(17):9013-9025.
APA Cashman, Sarah A..,Meyer, David E..,Edelen, Ashley N..,Ingwersen, Wesley W..,Abraham, John P..,...&Smith, Raymond L..(2016).Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing.ENVIRONMENTAL SCIENCE & TECHNOLOGY,50(17),9013-9025.
MLA Cashman, Sarah A.,et al."Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing".ENVIRONMENTAL SCIENCE & TECHNOLOGY 50.17(2016):9013-9025.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cashman, Sarah A.]的文章
[Meyer, David E.]的文章
[Edelen, Ashley N.]的文章
百度学术
百度学术中相似的文章
[Cashman, Sarah A.]的文章
[Meyer, David E.]的文章
[Edelen, Ashley N.]的文章
必应学术
必应学术中相似的文章
[Cashman, Sarah A.]的文章
[Meyer, David E.]的文章
[Edelen, Ashley N.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。