Climate Change Data Portal
DOI | 10.1007/s11274-013-1576-x |
Bacillus thuringiensis as a surrogate for Bacillus anthracis in aerosol research | |
Tufts, Jenia A. M.1,2; Calfee, M. Worth2; Lee, Sang Don2; Ryan, Shawn P.2 | |
发表日期 | 2014-05-01 |
ISSN | 0959-3993 |
卷号 | 30期号:5页码:1453-1461 |
英文摘要 | Characterization of candidate surrogate spores prior to experimental use is critical to confirm that the surrogate characteristics are as closely similar as possible to those of the pathogenic agent of interest. This review compares the physical properties inherent to spores of Bacillus anthracis (Ba) and Bacillus thuringiensis (Bt) that impact their movement in air and interaction with surfaces, including size, shape, density, surface morphology, structure and hydrophobicity. Also evaluated is the impact of irradiation on the physical properties of both Bacillus species. Many physical features of Bt and Ba have been found to be similar and, while Bt is considered typically non-pathogenic, it is in the B. cereus group, as is Ba. When cultured and sporulated under similar conditions, both microorganisms share a similar cylindrical pellet shape, an aerodynamic diameter of approximately 1 mu m (in the respirable size range), have an exosporium with a hairy nap, and have higher relative hydrophobicities than other Bacillus species. While spore size, morphology, and other physical properties can vary among strains of the same species, the variations can be due to growth/sporulation conditions and may, therefore, be controlled. Growth and sporulation conditions are likely among the most important factors that influence the representativeness of one species, or preparation, to another. All Bt spores may, therefore, not be representative of all Ba spores. Irradiated spores do not appear to be a good surrogate to predict the behavior of non-irradiated spores due to structural damage caused by the irradiation. While the use of Bt as a surrogate for Ba in aerosol testing appears to be well supported, this review does not attempt to narrow selection between Bt strains. Comparative studies should be performed to test the hypothesis that viable Ba and Bt spores will behave similarly when suspended in the air (as an aerosol) and to compare the known microscale characteristics versus the macroscale response. |
英文关键词 | Anthrax;Biological outdoor decontamination;Detection |
语种 | 英语 |
WOS记录号 | WOS:000333620600002 |
来源期刊 | WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY |
来源机构 | 美国环保署 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/57988 |
作者单位 | 1.Oak Ridge Inst Sci & Educ, Res Triangle Pk, NC USA; 2.US EPA, Natl Homeland Secur Res Ctr, Off Res & Dev, Res Triangle Pk, NC 27711 USA |
推荐引用方式 GB/T 7714 | Tufts, Jenia A. M.,Calfee, M. Worth,Lee, Sang Don,et al. Bacillus thuringiensis as a surrogate for Bacillus anthracis in aerosol research[J]. 美国环保署,2014,30(5):1453-1461. |
APA | Tufts, Jenia A. M.,Calfee, M. Worth,Lee, Sang Don,&Ryan, Shawn P..(2014).Bacillus thuringiensis as a surrogate for Bacillus anthracis in aerosol research.WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY,30(5),1453-1461. |
MLA | Tufts, Jenia A. M.,et al."Bacillus thuringiensis as a surrogate for Bacillus anthracis in aerosol research".WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY 30.5(2014):1453-1461. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。