Climate Change Data Portal
DOI | 10.1016/j.watres.2016.11.012 |
Bayesian Monte Carlo and maximum likelihood approach for uncertainty estimation and risk management: Application to lake oxygen recovery model | |
Chaudhary, Abhishek1; Hantush, Mohamed M.2 | |
发表日期 | 2017 |
ISSN | 0043-1354 |
卷号 | 108页码:301-311 |
英文摘要 | Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood estimation (BMCML) to calibrate a lake oxygen recovery model. We first derive an analytical solution of the differential equation governing lake-averaged oxygen dynamics as a function of time-variable wind speed. Statistical inferences on model parameters and predictive uncertainty are then drawn by Bayesian conditioning of the analytical solution on observed daily wind speed and oxygen concentration data obtained from an earlier study during two recovery periods on a eutrophic lake in upper state New York. The model is calibrated using oxygen recovery data for one year and statistical inferences were validated using recovery data for another year. Compared with essentially two-step, regression and optimization approach, the BMCML results are more comprehensive and performed relatively better in predicting the observed temporal dissolved oxygen levels (DO) in the lake. BMCML also produced comparable calibration and validation results with those obtained using popular Markov Chain Monte Carlo technique (MCMC) and is computationally simpler and easier to implement than the MCMC. Next, using the calibrated model, we derive an optimal relationship between liquid film-transfer coefficient for oxygen and wind speed and associated 95% confidence band, which are shown to be consistent with reported measured values at five different lakes. Finally, we illustrate the robustness of the BMCML to solve risk-based water quality management problems, showing that neglecting cross-correlations between parameters could lead to improper required BOD load reduction to achieve the compliance criteria of 5 mg/L. (C) 2016 Elsevier Ltd. All rights reserved. |
英文关键词 | Water quality;Environmental modeling;Risk management;Bayesian;Uncertainty estimation;Dissolved oxygen |
语种 | 英语 |
WOS记录号 | WOS:000390181600030 |
来源期刊 | WATER RESEARCH |
来源机构 | 美国环保署 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/57873 |
作者单位 | 1.ETH, Inst Food Nutr & Hlth, CH-8092 Zurich, Switzerland; 2.US EPA, ORD, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA |
推荐引用方式 GB/T 7714 | Chaudhary, Abhishek,Hantush, Mohamed M.. Bayesian Monte Carlo and maximum likelihood approach for uncertainty estimation and risk management: Application to lake oxygen recovery model[J]. 美国环保署,2017,108:301-311. |
APA | Chaudhary, Abhishek,&Hantush, Mohamed M..(2017).Bayesian Monte Carlo and maximum likelihood approach for uncertainty estimation and risk management: Application to lake oxygen recovery model.WATER RESEARCH,108,301-311. |
MLA | Chaudhary, Abhishek,et al."Bayesian Monte Carlo and maximum likelihood approach for uncertainty estimation and risk management: Application to lake oxygen recovery model".WATER RESEARCH 108(2017):301-311. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。