Climate Change Data Portal
DOI | 10.1016/j.rse.2015.12.023 |
An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data | |
Shao, Yang1; Lunetta, Ross S.2; Wheeler, Brandon1; Iiames, John S.2; Campbell, James B.1 | |
发表日期 | 2016-03-01 |
ISSN | 0034-4257 |
卷号 | 174页码:258-265 |
英文摘要 | In this study we compared the Savitzky-Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and discrete Fourier transformation smoothing algorithms (noise reduction) applied to Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-series data, to provide continuous phenology data used for land-cover (LC) classifications across the Laurentian Great Lakes Basin (GLB). MODIS 16-day 250 m NDVI imagery for the GLB was used in conjunction with National Land Cover Database (NLCD) from 2001, 2006 and 2011, and the Cropland Data Layers (CDL) from 2011 to 2014 to conduct classification evaluations. Inter-class separability was measured by Jeffries-Matusita (JM) distances between selected cover type pairs (both general classes and specific crops), and intra-class variability was measured by calculating simple Euclidean distance for samples within cover types. For the GLB, we found that the application of a smoothing algorithm significantly reduced image noise compared to the raw data. However, the Jeffries-Matusita (JM) measures for smoothed NDVI temporal profiles resulted in large inconsistencies. Of the five algorithms tested, only the Fourier transformation algorithm and Whittaker smoother improved inter-class separability for corn soybean class pair and significantly improved overall classification accuracy. When compared to the raw NDVI data as input, the overall classification accuracy from the Fourier transformation and Whittaker smoother improved performance by approximately 2-6% for some years. Conversely, the asymmetric Gaussian and double-logistic smoothing algorithms actually led to degradation of classification performance. (C) 2015 Elsevier Inc. All rights reserved. |
英文关键词 | MODIS-NDVI;Multi-temporal analysis;Smoothing algorithms;Validation |
语种 | 英语 |
WOS记录号 | WOS:000368746800020 |
来源期刊 | REMOTE SENSING OF ENVIRONMENT
![]() |
来源机构 | 美国环保署 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/57647 |
作者单位 | 1.Virginia Tech, Coll Nat Resources & Environm, Dept Geog, 115 Major Williams Hall, Blacksburg, VA 24061 USA; 2.US EPA, Natl Exposure Res Lab, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA |
推荐引用方式 GB/T 7714 | Shao, Yang,Lunetta, Ross S.,Wheeler, Brandon,et al. An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data[J]. 美国环保署,2016,174:258-265. |
APA | Shao, Yang,Lunetta, Ross S.,Wheeler, Brandon,Iiames, John S.,&Campbell, James B..(2016).An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data.REMOTE SENSING OF ENVIRONMENT,174,258-265. |
MLA | Shao, Yang,et al."An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data".REMOTE SENSING OF ENVIRONMENT 174(2016):258-265. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。