Climate Change Data Portal
DOI | 10.1016/j.jenvman.2013.11.030 |
Sediment and total phosphorous contributors in Rock River watershed | |
Mbonimpa, Eric G.; Yuan, Yongping; Nash, Maliha S.; Mehaffey, Megan H. | |
发表日期 | 2014-01-15 |
ISSN | 0301-4797 |
卷号 | 133页码:214-221 |
英文摘要 | Total phosphorous (TP) and total suspended sediment (TSS) pollution is a problem in the US Midwest and is of particular concern in the Great Lakes region where many water bodies are already eutrophic. Increases in monoculture corn planting to feed ethanol based biofuel production could exacerbate these already stressed water bodies. In this study we expand on the previous studies relating landscape variables such as land cover, soil type and slope with changes in pollutant concentrations and loading in the Great Lakes region. The Rock River watershed in Wisconsin, USA was chosen due to its diverse land use, numerous lakes and reservoirs susceptible to TSS and TP pollution, and the availability of long-term streamflow, TSS and TP data. Eight independent subwatersheds in the Rock River watershed were identified using United States Geological Survey (USGS) monitoring sites that monitor flow, TSS and TP. For each subwatershed, we calculated land use, soil type, and terrain slope metrics or variables. TSS and TP from the different subwatersheds were compared using Analysis of Variance (ANOVA), and associations and relationships between landscape metrics and water quality (TSS and TP) were evaluated using the partial least square (PLS) regression. Results show that urban land use and agricultural land growing corn rotated with non-leguminous crops are associated with TSS and TP in streams. This indicates that increasing the amount of corn rotated with non-leguminous crops within a subwatershed could increase degradation of water quality. Results showed that increase in corn soybean rotation acreage within the watershed is associated with reduction in stream's TSS and TP. Results also show that forest and water bodies were associated with reduction in TSS and TP. Based on our results we recommend adoption of the Low Impact Development (LID) approach in urban dominated subwatersheds. This approach attempts to replicate the pre-development hydrological regime by reducing the ratio of impervious area to natural cover wherever possible, as well as recycling or treating stormwater runoff using filter strips, ponds and wetlands. In agriculturally dominated subwatersheds, we recommend increasing corn soybean rotation, keeping corn on areas with gentle slope and soils with lower erodibility. Published by Elsevier Ltd. |
英文关键词 | Land use;PLS;Rock River watershed;TP;TSS |
语种 | 英语 |
WOS记录号 | WOS:000331341300024 |
来源期刊 | JOURNAL OF ENVIRONMENTAL MANAGEMENT |
来源机构 | 美国环保署 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/57321 |
作者单位 | US EPA, Off Res & Dev, Landscape Ecol Branch, Las Vegas, NV 89193 USA |
推荐引用方式 GB/T 7714 | Mbonimpa, Eric G.,Yuan, Yongping,Nash, Maliha S.,et al. Sediment and total phosphorous contributors in Rock River watershed[J]. 美国环保署,2014,133:214-221. |
APA | Mbonimpa, Eric G.,Yuan, Yongping,Nash, Maliha S.,&Mehaffey, Megan H..(2014).Sediment and total phosphorous contributors in Rock River watershed.JOURNAL OF ENVIRONMENTAL MANAGEMENT,133,214-221. |
MLA | Mbonimpa, Eric G.,et al."Sediment and total phosphorous contributors in Rock River watershed".JOURNAL OF ENVIRONMENTAL MANAGEMENT 133(2014):214-221. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。