CCPortal
DOI10.1186/s13321-018-0300-0
Exploring non-linear distance metrics in the structure-activity space: QSAR models for human estrogen receptor
Balabin, Ilya A.1; Judson, Richard S.2
发表日期2018-09-18
ISSN1758-2946
卷号10
英文摘要

Background: Quantitative structure-activity relationship (QSAR) models are important tools used in discovering new drug candidates and identifying potentially harmful environmental chemicals. These models often face two fundamental challenges: limited amount of available biological activity data and noise or uncertainty in the activity data themselves. To address these challenges, we introduce and explore a QSAR model based on custom distance metrics in the structure-activity space.


Methods: The model is built on top of the k-nearest neighbor model, incorporating non-linearity not only in the chemical structure space, but also in the biological activity space.The model is tuned and evaluated using activity data for human estrogen receptor from the US EPA ToxCast and Tox21 databases.


Results: The model closely trails the CERAPP consensus model (built on top of 48 individual human estrogen receptor activity models) in agonist activity predictions and consistently outperforms the CERAPP consensus model in antagonist activity predictions.


Discussion: We suggest that incorporating non-linear distance metrics may significantly improve QSAR model performance when the available biological activity data are limited.


英文关键词Chemical space;Molecular similarity;Distance metrics;Structure-activity landscape;QSAR models;Human estrogen receptor
语种英语
WOS记录号WOS:000444948900001
来源期刊JOURNAL OF CHEMINFORMATICS
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/57131
作者单位1.Leidos Inc, 109 TW Alexander Dr,MD N127-01, Res Triangle Pk, NC 27711 USA;
2.US EPA, ORD, NCCT, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA
推荐引用方式
GB/T 7714
Balabin, Ilya A.,Judson, Richard S.. Exploring non-linear distance metrics in the structure-activity space: QSAR models for human estrogen receptor[J]. 美国环保署,2018,10.
APA Balabin, Ilya A.,&Judson, Richard S..(2018).Exploring non-linear distance metrics in the structure-activity space: QSAR models for human estrogen receptor.JOURNAL OF CHEMINFORMATICS,10.
MLA Balabin, Ilya A.,et al."Exploring non-linear distance metrics in the structure-activity space: QSAR models for human estrogen receptor".JOURNAL OF CHEMINFORMATICS 10(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Balabin, Ilya A.]的文章
[Judson, Richard S.]的文章
百度学术
百度学术中相似的文章
[Balabin, Ilya A.]的文章
[Judson, Richard S.]的文章
必应学术
必应学术中相似的文章
[Balabin, Ilya A.]的文章
[Judson, Richard S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。