Climate Change Data Portal
DOI | 10.1186/s13321-018-0300-0 |
Exploring non-linear distance metrics in the structure-activity space: QSAR models for human estrogen receptor | |
Balabin, Ilya A.1; Judson, Richard S.2 | |
发表日期 | 2018-09-18 |
ISSN | 1758-2946 |
卷号 | 10 |
英文摘要 | Background: Quantitative structure-activity relationship (QSAR) models are important tools used in discovering new drug candidates and identifying potentially harmful environmental chemicals. These models often face two fundamental challenges: limited amount of available biological activity data and noise or uncertainty in the activity data themselves. To address these challenges, we introduce and explore a QSAR model based on custom distance metrics in the structure-activity space. Methods: The model is built on top of the k-nearest neighbor model, incorporating non-linearity not only in the chemical structure space, but also in the biological activity space.The model is tuned and evaluated using activity data for human estrogen receptor from the US EPA ToxCast and Tox21 databases. Results: The model closely trails the CERAPP consensus model (built on top of 48 individual human estrogen receptor activity models) in agonist activity predictions and consistently outperforms the CERAPP consensus model in antagonist activity predictions. Discussion: We suggest that incorporating non-linear distance metrics may significantly improve QSAR model performance when the available biological activity data are limited. |
英文关键词 | Chemical space;Molecular similarity;Distance metrics;Structure-activity landscape;QSAR models;Human estrogen receptor |
语种 | 英语 |
WOS记录号 | WOS:000444948900001 |
来源期刊 | JOURNAL OF CHEMINFORMATICS
![]() |
来源机构 | 美国环保署 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/57131 |
作者单位 | 1.Leidos Inc, 109 TW Alexander Dr,MD N127-01, Res Triangle Pk, NC 27711 USA; 2.US EPA, ORD, NCCT, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA |
推荐引用方式 GB/T 7714 | Balabin, Ilya A.,Judson, Richard S.. Exploring non-linear distance metrics in the structure-activity space: QSAR models for human estrogen receptor[J]. 美国环保署,2018,10. |
APA | Balabin, Ilya A.,&Judson, Richard S..(2018).Exploring non-linear distance metrics in the structure-activity space: QSAR models for human estrogen receptor.JOURNAL OF CHEMINFORMATICS,10. |
MLA | Balabin, Ilya A.,et al."Exploring non-linear distance metrics in the structure-activity space: QSAR models for human estrogen receptor".JOURNAL OF CHEMINFORMATICS 10(2018). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。