CCPortal
DOI10.1007/s11434-013-5818-y
Water balance estimates of ten greatest lakes in China using ICESat and Landsat data
Zhang GuoQing; Xie HongJie; Yao TanDong; Kang ShiChang
发表日期2013
ISSN1001-6538
卷号58期号:31页码:3815-3829
英文摘要

Lake level and area variations are sensitive to regional climate changes and can be used to indirectly estimate water balances of lakes. In this study, 10 of the largest lakes in China, similar to 1000 km(2) or larger, are examined to determine changes in lake level and area derived respectively from ICESat and Landsat data recorded between 2003 and 2009. The time series of lake level and area of Selin Co, Nam Co, and Qinghai Lake in the Tibetan Plateau (TP) and Xingkai Lake in northeastern China exhibit an increasing trend, with Selin Co showing the fastest rise in lake level (0.69 m/a), area (32.59 km(2)/a), and volume (1.25 km(3)/a) among the 10 examined lakes. Bosten and Hulun lakes in the arid and semiarid region of northern China show a decline in both lake level and area, with Bosten Lake showing the largest decrease in lake level (-0.43 m/a) and Hulun Lake showing the largest area shrinkage (-35.56 km(2)/a). However, Dongting, Poyang, Taihu, and Hongze lakes in the mid-lower reaches of the Yangtze River basin present seasonal variability without any apparent tendencies. The lake level and area show strong correlations for Selin Co, Nam Co, Qinghai, Poyang, Hulun, and Bosten lakes (R (2) > 0.80) and for Taihu, Hongze, and Xingkai lakes (similar to 0.70) and weak correlation for East Dongting Lake (0.37). The lake level changes and water volume changes are in very good agreement for all lakes (R (2) > 0.98). Water balances of the 10 lakes are derived on the basis of both lake level and area changes, with Selin Co, Nam Co, Qinghai, and Xingkai lakes showing positive water budgets of 9.08, 4.07, 2.88, and 1.09 km(3), respectively. Bosten and Hulun lakes show negative budgets of -3.01 and -4.73 km(3), respectively, and the four lakes along the Yangtze River show no obvious variations. Possible explanations for the lake level and area changes in these four lakes are also discussed. This study suggests that satellite remote sensing could serve as a fast and effective tool for estimating lake water balance.


英文关键词water balance;lakes;ICESat;Tibetan Plateau
语种英语
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000326823500012
来源期刊CHINESE SCIENCE BULLETIN
来源机构中国科学院青藏高原研究所
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/495
推荐引用方式
GB/T 7714
Zhang GuoQing,Xie HongJie,Yao TanDong,et al. Water balance estimates of ten greatest lakes in China using ICESat and Landsat data[J]. 中国科学院青藏高原研究所,2013,58(31):3815-3829.
APA Zhang GuoQing,Xie HongJie,Yao TanDong,&Kang ShiChang.(2013).Water balance estimates of ten greatest lakes in China using ICESat and Landsat data.CHINESE SCIENCE BULLETIN,58(31),3815-3829.
MLA Zhang GuoQing,et al."Water balance estimates of ten greatest lakes in China using ICESat and Landsat data".CHINESE SCIENCE BULLETIN 58.31(2013):3815-3829.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang GuoQing]的文章
[Xie HongJie]的文章
[Yao TanDong]的文章
百度学术
百度学术中相似的文章
[Zhang GuoQing]的文章
[Xie HongJie]的文章
[Yao TanDong]的文章
必应学术
必应学术中相似的文章
[Zhang GuoQing]的文章
[Xie HongJie]的文章
[Yao TanDong]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。