CCPortal
DOI10.3389/fevo.2024.1405459
Stingless bee foragers experience more thermally stressful microclimates and have wider thermal tolerance breadths than other worker subcastes
发表日期2024
ISSN2296-701X
起始页码12
卷号12
英文摘要Introduction: The current state of anthropogenic climate change is particularly concerning for tropical insects, species predicted to be the most negatively affected. Researching climatic tolerance in social insects is challenging because adaptations exist at both individual and societal levels. Division of labor research helps to bridge the gap between our understanding of these adaptations at different scales, which is important because social insects comprise a tremendous portion of global animal biomass, biodiversity, and ecosystem services. Considering how individual physiologies construct group-level adaptations can improve climate change impact assessments for social species. Tetragonisca angustula is a neotropical stingless bee species that exhibits high worker subcaste specialization with a morphologically distinct soldier caste. Methods: We used this species to investigate 1) whether age- and size-differentiated subcastes differ in thermal tolerance, 2) which worker subcaste operates closest to their thermal limits, and 3) the extent to which this species selects active foraging times to offset thermal stress. We measured the thermal tolerance (CTmax and CTmin) of small-bodied foragers and two soldier subcastes (hovering guards and standing guards) in T. angustula. Results and discussion: Despite body size differences between foragers and guards, no differences in the upper or lower thermal limits were observed. However, the average thermal tolerance breadth of foragers was significantly larger than that of guards, and foraging sites were more thermally variable than nest sites, supporting the Climatic Variability Hypothesis at a microclimate scale and in the context of division of labor. Warming tolerance was significantly lower among small-bodied foragers compared to hovering and standing guards. The magnitude of warming tolerances indicated low risk of imminent climate change impacts in this environment but suggests that increasing temperatures and heatwave prevalence may cause foragers to meet their upper thermal limits before other subcastes. Foraging occurred at a narrower range of temperatures than would challenge critical temperatures, with higher morning activity. Directionally increasing temperatures will likely confine these preferred foraging temperatures to a narrower time window. Further study is needed to elucidate how foragers may shift times of activity in response to anthropogenic warming, but changing climates may impact plant pollination rates in natural and agricultural systems.
英文关键词climate change; Jata & iacute;; Meliponini; Microclimates; social insects; Tetragonisca angustula; thermal tolerance; warming tolerance
语种英语
WOS研究方向Environmental Sciences & Ecology
WOS类目Ecology
WOS记录号WOS:001228951200001
来源期刊FRONTIERS IN ECOLOGY AND EVOLUTION
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/310015
作者单位University of Southern Mississippi
推荐引用方式
GB/T 7714
. Stingless bee foragers experience more thermally stressful microclimates and have wider thermal tolerance breadths than other worker subcastes[J],2024,12.
APA (2024).Stingless bee foragers experience more thermally stressful microclimates and have wider thermal tolerance breadths than other worker subcastes.FRONTIERS IN ECOLOGY AND EVOLUTION,12.
MLA "Stingless bee foragers experience more thermally stressful microclimates and have wider thermal tolerance breadths than other worker subcastes".FRONTIERS IN ECOLOGY AND EVOLUTION 12(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
百度学术
百度学术中相似的文章
必应学术
必应学术中相似的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。