CCPortal
DOI10.1080/23311932.2024.2348697
Enhancing irrigation water management based on ETo prediction using machine learning to mitigate climate change
Youssef, Mohamed A.; Peters, R. Troy; El-Shirbeny, Mohammed; Abd-ElGawad, Ahmed M.; Rashad, Younes M.; Hafez, Mohamed; Arafa, Yasser
发表日期2024
ISSN2331-1932
起始页码10
结束页码1
卷号10期号:1
英文摘要This study addressed the increasing challenges of climate change by exploring the use of machine learning (ML) algorithms to predict the reference evapotranspiration (ETo). Accurate ETo prediction is crucial for optimizing irrigation water management. This research aimed to assess the reliability and accuracy of ML algorithms in predicting ETo values. Three ETo calculation methods were employed: Penman-Monteith (PM), Hargreaves (HA), and Blaney-Criddle (BC). The study analyzed ETo and other climate variables using the modified Mann-Kendall test (m-MK) and Theil Sen's slope estimator methods to identify trends. Multiple ML algorithms, including Support Vector Regression (SVR), Random Forest (RF), XGboost, K-Nearest Neighbor (KNN), Decision Trees (DT), Linear Regression (LR), and Multiple Linear Regression (MLR) were utilized for ETo prediction. The ML algorithms exhibited excellent performance, with coefficients of determination (R-2) values ranging from 0.97 to 0.99 for PM, 0.99 for HA, and from 0.91 to 0.92 for BC. The models demonstrated a high value of the Kling-Gupta efficiency (KGE) with low Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values. Strong correlations between the predicted and calculated daily ETo were observed with R-2 values of 0.99, 0.99, and 0.92 for PM, HA, and BC methods, respectively. In conclusion, this study affirmed the accuracy and reliability of ML algorithms to match that of standard ETo prediction equations.
英文关键词Climate change; reference evapotranspiration; machine learning algorithms; modified Mann-Kendall test; Kling-Gupta efficiency
语种英语
WOS研究方向Agriculture
WOS类目Agriculture, Multidisciplinary
WOS记录号WOS:001217415900001
来源期刊COGENT FOOD & AGRICULTURE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/309910
作者单位Egyptian Knowledge Bank (EKB); Ain Shams University; Washington State University; Egyptian Knowledge Bank (EKB); National Authority for Remote Sensing & Space Sciences (NARSS); King Saud University; Egyptian Knowledge Bank (EKB); City of Scientific Research & Technological Applications (SRTA-City); Egyptian Knowledge Bank (EKB); City of Scientific Research & Technological Applications (SRTA-City)
推荐引用方式
GB/T 7714
Youssef, Mohamed A.,Peters, R. Troy,El-Shirbeny, Mohammed,et al. Enhancing irrigation water management based on ETo prediction using machine learning to mitigate climate change[J],2024,10(1).
APA Youssef, Mohamed A..,Peters, R. Troy.,El-Shirbeny, Mohammed.,Abd-ElGawad, Ahmed M..,Rashad, Younes M..,...&Arafa, Yasser.(2024).Enhancing irrigation water management based on ETo prediction using machine learning to mitigate climate change.COGENT FOOD & AGRICULTURE,10(1).
MLA Youssef, Mohamed A.,et al."Enhancing irrigation water management based on ETo prediction using machine learning to mitigate climate change".COGENT FOOD & AGRICULTURE 10.1(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Youssef, Mohamed A.]的文章
[Peters, R. Troy]的文章
[El-Shirbeny, Mohammed]的文章
百度学术
百度学术中相似的文章
[Youssef, Mohamed A.]的文章
[Peters, R. Troy]的文章
[El-Shirbeny, Mohammed]的文章
必应学术
必应学术中相似的文章
[Youssef, Mohamed A.]的文章
[Peters, R. Troy]的文章
[El-Shirbeny, Mohammed]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。