CCPortal
DOI10.3390/biology13010003
Predicting the Potential Distribution of Haloxylon ammodendron under Climate Change Scenarios Using Machine Learning of a Maximum Entropy Model
Xiao, Fengjin; Liu, Qiufeng; Qin, Yun
发表日期2024
EISSN2079-7737
起始页码13
结束页码1
卷号13期号:1
英文摘要Haloxylon ammodendron (H. ammodendron) is a second-class protected plant of national significance in China that is known for its growth in desert and semidesert regions, where it serves as a desert ecosystem guardian by playing a substantial role in maintaining ecosystem structure and function. The changing global climate has substantially altered the growth conditions for H. ammodendron. This study focuses on identifying the key variables influencing the distribution of H. ammodendron and determining their potential impact on future distribution. We employed the Maxent model to evaluate the current climate suitability for H. ammodendron distribution and to project its future changes across various shared socioeconomic pathway (SSP) scenarios. Our findings indicate that precipitation during the warmest quarter and precipitation during the wettest month are the most influential variables affecting the potentially suitable habitats of H. ammodendron. The highly suitable habitat area for H. ammodendron currently covers approximately 489,800 km2. The Maxent model forecasts an expansion of highly suitable H. ammodendron habitat under all future SSP scenarios, with the extent of unsuitable areas increasing with greater global warming. The increased highly suitable habitats range from 40% (SSP585) to 80% (SSP126) by the 2070s (2060-2080). Furthermore, our results indicate a continued expansion of desertification areas due to global warming, highlighting the significant role of H. ammodendron in maintaining desert ecosystem stability. This study offers valuable insights into biodiversity preservation and ecological protection in the context of future climate change scenarios.
英文关键词climate change; H. ammodendron; Maxent model; potential distribution; prediction
语种英语
WOS研究方向Life Sciences & Biomedicine - Other Topics
WOS类目Biology
WOS记录号WOS:001151826000001
来源期刊BIOLOGY-BASEL
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/309895
作者单位China Meteorological Administration
推荐引用方式
GB/T 7714
Xiao, Fengjin,Liu, Qiufeng,Qin, Yun. Predicting the Potential Distribution of Haloxylon ammodendron under Climate Change Scenarios Using Machine Learning of a Maximum Entropy Model[J],2024,13(1).
APA Xiao, Fengjin,Liu, Qiufeng,&Qin, Yun.(2024).Predicting the Potential Distribution of Haloxylon ammodendron under Climate Change Scenarios Using Machine Learning of a Maximum Entropy Model.BIOLOGY-BASEL,13(1).
MLA Xiao, Fengjin,et al."Predicting the Potential Distribution of Haloxylon ammodendron under Climate Change Scenarios Using Machine Learning of a Maximum Entropy Model".BIOLOGY-BASEL 13.1(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xiao, Fengjin]的文章
[Liu, Qiufeng]的文章
[Qin, Yun]的文章
百度学术
百度学术中相似的文章
[Xiao, Fengjin]的文章
[Liu, Qiufeng]的文章
[Qin, Yun]的文章
必应学术
必应学术中相似的文章
[Xiao, Fengjin]的文章
[Liu, Qiufeng]的文章
[Qin, Yun]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。