CCPortal
DOI10.1109/TGRS.2024.3390179
Estimation of Spatiotemporal Variability of Global Surface Ocean DIC Fields Using Ocean Color Remote Sensing Data
Shaik, Ibrahim; Krishna, Kande Vamsi; Nagamani, P. V.; Begum, S. K.; Shanmugam, Palanisamy; Mathew, Reema; Pathakoti, Mahesh; Bothale, Rajashree V.; Chauhan, Prakash; Osama, Mohammed
发表日期2024
ISSN0196-2892
EISSN1558-0644
起始页码62
卷号62
英文摘要The estimation of dissolved inorganic carbon (DIC) in global surface ocean waters is crucial for understanding air-sea carbon dioxide (CO2) flux rates, ocean acidification, and climate change. DIC magnitude and spatiotemporal variability are influenced by various physical and biogeochemical processes. Due to dynamic variations in ocean surface water, estimating DIC through in situ data alone is challenging. Ocean color remote sensing offers high spatial and temporal resolution data with extensive synoptic views. Over decades, multiple DIC approaches have emerged using in situ and satellite observations but are limited to specific regions due to improper model parameter selection and sparse in situ measurements. To address this, we propose a novel multiparametric regression (MPR) approach that relates DIC as a function of sea surface temperature (SST), sea surface salinity (SSS), and chlorophyll-a (Chla) concentration. Utilizing in situ data from the Global Ocean Data Analysis Project (GLODAP), the trends of DIC with SST, SSS, and Chla were analyzed to develop MPR regression equations. The validation results indicated that the proposed regression approach accurately estimates DIC in global surface ocean waters. This approach offers benefits, such as DIC estimates at any spatiotemporal resolutions, easy implementation, and cost-effective alternatives to in situ measurements. Additionally, seasonal and interannual variations of global DIC fields were demonstrated through satellite oceanographic data, enhancing monitoring of ocean acidification and climate change scenarios.
英文关键词Oceans; Sea measurements; Sea surface; Spatiotemporal phenomena; Satellites; Surface treatment; Ocean temperature; Climate change; Carbon cycle; dissolved inorganic carbon (DIC); global ocean; multiparametric regression (MPR)
语种英语
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001225891900004
来源期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/309846
作者单位Department of Space (DoS), Government of India; Indian Space Research Organisation (ISRO); National Remote Sensing Centre (NRSC); Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Madras; Andhra University
推荐引用方式
GB/T 7714
Shaik, Ibrahim,Krishna, Kande Vamsi,Nagamani, P. V.,et al. Estimation of Spatiotemporal Variability of Global Surface Ocean DIC Fields Using Ocean Color Remote Sensing Data[J],2024,62.
APA Shaik, Ibrahim.,Krishna, Kande Vamsi.,Nagamani, P. V..,Begum, S. K..,Shanmugam, Palanisamy.,...&Osama, Mohammed.(2024).Estimation of Spatiotemporal Variability of Global Surface Ocean DIC Fields Using Ocean Color Remote Sensing Data.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,62.
MLA Shaik, Ibrahim,et al."Estimation of Spatiotemporal Variability of Global Surface Ocean DIC Fields Using Ocean Color Remote Sensing Data".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 62(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shaik, Ibrahim]的文章
[Krishna, Kande Vamsi]的文章
[Nagamani, P. V.]的文章
百度学术
百度学术中相似的文章
[Shaik, Ibrahim]的文章
[Krishna, Kande Vamsi]的文章
[Nagamani, P. V.]的文章
必应学术
必应学术中相似的文章
[Shaik, Ibrahim]的文章
[Krishna, Kande Vamsi]的文章
[Nagamani, P. V.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。