CCPortal
DOI10.1016/j.gecco.2024.e02866
Reconstructed and projected beach temperatures reveal where flatback turtles are most at risk from climate change
Gammon, Malindi; Bentley, Blair; Fossette, Sabrina; Mitchell, Nicola J.
发表日期2024
EISSN2351-9894
起始页码51
卷号51
英文摘要Nest temperature is the predominant driver of emergence success and primary sex ratios in sea turtles, with female offspring produced at higher temperatures due to temperature-dependent sex determination. However, emergence success and primary sex ratios are unfeasible to measure at scale, making methods to estimate these life-history traits from predicted sand temperatures highly desirable for long-term conservation planning in the context of climate change. To address this, we used a mechanistic microclimate model to predict hourly sand temperatures, over 32 nesting seasons since 1986, at 402 West Australian beaches supporting nesting by flatback turtles (Natator depressus). Predicted sand temperatures indicated that similar to 70% of these beaches carried a 'very low' to 'intermediate' risk of subjecting embryos to thermal stress. By combining these temperature predictions with a physiological model, current and future emergence success and sex ratios were projected for ten different beaches spanning a range of thermal microclimates, under various climate change scenarios. Under recent climate conditions, emergence success averaged 76%, but declined to 63% and 37% with a 2 degrees C and 4 degree celsius increase in air temperature, respectively. The sex ratios of hatchlings varied by location, but extremely skewed sex ratios were anticipated in a 4 degrees C warming scenario. Our projections reveal that 'high risk' nesting beaches will regularly experience clutch failure as climate change progresses, while cooler beaches offer long-term nesting potential and require protection from additional anthropogenic impacts. These projections, covering an entire genetic stock, supply demographic data for assessing extinction risks and this method can be applied to sea turtle populations worldwide.
英文关键词Flatback turtle; Natator depressus; Pilbara; North West Shelf; NicheMapR; Thermal risk assessment; Stock-wide; Beach; Rookery
语种英语
WOS研究方向Biodiversity & Conservation ; Environmental Sciences & Ecology
WOS类目Biodiversity Conservation ; Ecology
WOS记录号WOS:001204276300001
来源期刊GLOBAL ECOLOGY AND CONSERVATION
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/308419
作者单位University of Western Australia; University of Western Australia; University of Massachusetts System; University of Massachusetts Amherst
推荐引用方式
GB/T 7714
Gammon, Malindi,Bentley, Blair,Fossette, Sabrina,et al. Reconstructed and projected beach temperatures reveal where flatback turtles are most at risk from climate change[J],2024,51.
APA Gammon, Malindi,Bentley, Blair,Fossette, Sabrina,&Mitchell, Nicola J..(2024).Reconstructed and projected beach temperatures reveal where flatback turtles are most at risk from climate change.GLOBAL ECOLOGY AND CONSERVATION,51.
MLA Gammon, Malindi,et al."Reconstructed and projected beach temperatures reveal where flatback turtles are most at risk from climate change".GLOBAL ECOLOGY AND CONSERVATION 51(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gammon, Malindi]的文章
[Bentley, Blair]的文章
[Fossette, Sabrina]的文章
百度学术
百度学术中相似的文章
[Gammon, Malindi]的文章
[Bentley, Blair]的文章
[Fossette, Sabrina]的文章
必应学术
必应学术中相似的文章
[Gammon, Malindi]的文章
[Bentley, Blair]的文章
[Fossette, Sabrina]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。