Climate Change Data Portal
DOI | 10.3389/feart.2024.1373353 |
Stress disturbance around Xianshuihe fault zone in the eastern Qinghai-Tibet Plateau and implication for fault stability | |
Guo, Songfeng; Li, Jinxuan; Qi, Shengwen; Zheng, Bowen; Zhang, Yaguo; Zou, Yu; Zhu, Weiwei; Waqar, Faisal Muhammad; Zada, Khan | |
发表日期 | 2024 |
EISSN | 2296-6463 |
起始页码 | 12 |
卷号 | 12 |
英文摘要 | The Xianshuihe fault zone in the eastern Qinghai-Tibetan Plateau is an important active tectonic boundary. Understanding its stress state is important for characterizing the dynamic evolution of the Qinghai-Tibet Plateau and the mechanism of the frequent occurrence of large earthquakes. Using 30 years of in-situ stress data from the Xianshuihe active fault zone, we statistically analyzed the spatial distribution characteristics of the stress in the region. The study area is generally characterized by a strike-slip stress field. Nevertheless, the stress state is vulnerable to topography and shows high spatial variation near the Earth's surface at a depth of 0-400 m. The local stress near the fault zone varies from the far-field stress. The orientations of the maximum horizontal principal stress possess an elliptical shape around the fault zone, while its magnitudes become hump-like as the distance increases from the fault. The large difference in properties between the fault zone and its adjacent rocks contributes to the differentiation of the direction of the local stress field near the fault. The results allow us to formulate a preliminary hypothesis that a rigid lateral extrusion model may control the nonuniformity of the local stress field in the Xianshuihe fault zone and preferentially interpret the tectonic uplift of the southeastern margin of the Qinghai-Tibet Plateau. Further, the stress accumulation in the shallow crustal regions of the Xianshuihe fault zone is relatively high, indicating that some segments of the fault zone are critically unstable. Kangding area (the Zheduotang segment and the Yalahe segment) and Luhuo segment hold relatively high potential for large earthquakes. The results of this study are of great significance for revealing the mechanism of fault-stress field interactions and for understanding the dynamic evolution mechanism of the uplift of the Qinghai-Tibet Plateau. |
英文关键词 | Xianshuihe fault zone; stress field; geomechanics; fault stability; Qinghai-Tibet Plateau |
语种 | 英语 |
WOS研究方向 | Geology |
WOS类目 | Geosciences, Multidisciplinary |
WOS记录号 | WOS:001188363400001 |
来源期刊 | FRONTIERS IN EARTH SCIENCE |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/308219 |
作者单位 | Chinese Academy of Sciences; Institute of Geology & Geophysics, CAS; Chinese Academy of Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Chang'an University |
推荐引用方式 GB/T 7714 | Guo, Songfeng,Li, Jinxuan,Qi, Shengwen,et al. Stress disturbance around Xianshuihe fault zone in the eastern Qinghai-Tibet Plateau and implication for fault stability[J],2024,12. |
APA | Guo, Songfeng.,Li, Jinxuan.,Qi, Shengwen.,Zheng, Bowen.,Zhang, Yaguo.,...&Zada, Khan.(2024).Stress disturbance around Xianshuihe fault zone in the eastern Qinghai-Tibet Plateau and implication for fault stability.FRONTIERS IN EARTH SCIENCE,12. |
MLA | Guo, Songfeng,et al."Stress disturbance around Xianshuihe fault zone in the eastern Qinghai-Tibet Plateau and implication for fault stability".FRONTIERS IN EARTH SCIENCE 12(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。