CCPortal
DOI10.1016/j.uclim.2024.101910
Forecast urban ecosystem services to track climate change: Combining machine learning and emergy spatial analysis
Liu, Gengyuan; Meng, Fanxin; Huang, Xiaoxiao; Han, Yang; Chen, Yu; Huo, Zhaoman; Chiaka, Jeffrey Chiwuikem; Yang, Qing
发表日期2024
ISSN2212-0955
起始页码55
卷号55
英文摘要It is important to simulate urban ecosystem services and provide guidance for their conservation and management under complex scenarios. We developed software for the rapid computation of ecosystem services based on emergy spatial analysis, machine learning, and the DLUCP model to predict the precipitation based on climate change and land use changes in five Chinese cities. The LSTM model is used to predict monthly precipitation for the cities based on historical data of 720 months. We also utilized the land use change prediction model based on the idea of distribution to improve the accuracy of future land use changes in China. The results show that based on the predicted values in 2025, an increase in ES is observed for Beijing, Wuhan, and Chongqing in 2020-2025 under both SSP1-RCP2.6 and SSP5-RCP8.5 scenarios, while the ES in Guangzhou and Shenzhen decreased. Furthermore, among the three types of ecosystems, the woodland ecosystem contributed the most to the total ES. The change in the woodland area had the greatest impact. Therefore, it is recommended that ecosystem conservation and restoration should focus on woodland ecosystem, and proactively address climate change to help achieve carbon peak and neutrality goals. The accuracy and applicability of the software are also tested.
英文关键词Ecosystem services; Emergy; Machine learning; LSTM; Land use change; Climate change
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS记录号WOS:001236589200001
来源期刊URBAN CLIMATE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/307668
作者单位Beijing Normal University; China Mobile; Beijing Normal University
推荐引用方式
GB/T 7714
Liu, Gengyuan,Meng, Fanxin,Huang, Xiaoxiao,et al. Forecast urban ecosystem services to track climate change: Combining machine learning and emergy spatial analysis[J],2024,55.
APA Liu, Gengyuan.,Meng, Fanxin.,Huang, Xiaoxiao.,Han, Yang.,Chen, Yu.,...&Yang, Qing.(2024).Forecast urban ecosystem services to track climate change: Combining machine learning and emergy spatial analysis.URBAN CLIMATE,55.
MLA Liu, Gengyuan,et al."Forecast urban ecosystem services to track climate change: Combining machine learning and emergy spatial analysis".URBAN CLIMATE 55(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Gengyuan]的文章
[Meng, Fanxin]的文章
[Huang, Xiaoxiao]的文章
百度学术
百度学术中相似的文章
[Liu, Gengyuan]的文章
[Meng, Fanxin]的文章
[Huang, Xiaoxiao]的文章
必应学术
必应学术中相似的文章
[Liu, Gengyuan]的文章
[Meng, Fanxin]的文章
[Huang, Xiaoxiao]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。