Climate Change Data Portal
DOI | 10.1016/j.chemgeo.2024.122053 |
Geochemical proxies for deep-sea temperature and nutrient content in cold-water bamboo corals | |
Williams, Thomas J.; Standish, Christopher D.; Archambault, Philippe; Godbold, Jasmin A.; Solan, Martin; Katsamenis, Orestis L.; Basford, Philip J.; Foster, Gavin L. | |
发表日期 | 2024 |
ISSN | 0009-2541 |
EISSN | 1872-6836 |
起始页码 | 654 |
卷号 | 654 |
英文摘要 | The impact of warming, acidification, and deoxygenation on deep-sea environments is a growing concern. Historical records are sparse, particularly at high latitudes, making climate change projections challenging. Indirect proxies, such as trace element composition of marine carbonates, such as coral skeletons, can offer an alternative method to fill data gaps but have not been realised. Here, using Laser Ablation Triple-Quadrupole Inductively Coupled Plasma Mass Spectrometry (LA-QQQ-ICP-MS), we examined micrometre-scale element variation within and between individual colonies of the bamboo coral Keratoisis sp. obtained from the Eastern Canadian Arctic. These data are used to assess the influence of biological variability on geochemical tracers for reconstructing past environmental conditions (temperature: Mg/Ca, Li/Mg, Sr/Ca, Ba/Ca, U/Ca; [Ba](SW): Ba/Ca). We place these data into context, based on a survey of literature data, using refined calibrations for high-Mg calcitic Octocorals. We find reproducible (2 sigma relative coefficient of variation) values of Mg/Ca (3%) and Ba/Ca (6%) along the radial growth axis of all colonies and internodes of Keratoisis sp., indicating that these signals are likely suitable for environmental reconstructions. After revising the available multi-taxa calibrations for Mg/Ca (0.316 +/- 0.026 degrees C/mmol/mol, R-2 = 0.87, p < 0.001) and Ba/Ca ([Ba/Ca mu mol/mol] = 0.148 +/- 0.005 [Ba-SW nmol/kg], R-2 = 0.97, p < 0.001), we show that vital effects within and among Keratoisis sp. colonies strongly influence reconstructed temperature and [Ba](SW), but this can be somewhat mitigated by combining multiple internode transects from one colony into a single composite series. Despite the ontogenetic variability, all colonies reveal a gradual deep-water cooling trend since the early 21st century and synchronised, multi-year spikes in Ba/Ca (and hence [Ba](SW)) that suggest substantial and coherent barium inputs to the seafloor. Our study confirms the reliability of Mg/Ca and Ba/Ca proxies in high-Mg bamboo corals for detecting multi-annual temperature and seawater barium variations in cold-water environments, but further investigation into micro-scale element behaviour influenced by biotic processes in these corals is needed to enhance confidence in reconstructions at finer spatial and temporal resolutions. We conclude that employing empirical calibrations based on multi-taxa approaches can increase the certainty of capturing regional changes in the environment more accurately than a single species calibration, while leveraging multiple element series to account for biological-induced variability improves single colony reconstructions. |
英文关键词 | Paleoclimatology; High-Mg calcites; Bamboo coral; Inter-colony variability; Intra-individual variability; Cold-water corals; Geochemistry |
语种 | 英语 |
WOS研究方向 | Geochemistry & Geophysics |
WOS类目 | Geochemistry & Geophysics |
WOS记录号 | WOS:001219360400001 |
来源期刊 | CHEMICAL GEOLOGY |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/306428 |
作者单位 | NERC National Oceanography Centre; University of Southampton; Laval University; University of Southampton |
推荐引用方式 GB/T 7714 | Williams, Thomas J.,Standish, Christopher D.,Archambault, Philippe,et al. Geochemical proxies for deep-sea temperature and nutrient content in cold-water bamboo corals[J],2024,654. |
APA | Williams, Thomas J..,Standish, Christopher D..,Archambault, Philippe.,Godbold, Jasmin A..,Solan, Martin.,...&Foster, Gavin L..(2024).Geochemical proxies for deep-sea temperature and nutrient content in cold-water bamboo corals.CHEMICAL GEOLOGY,654. |
MLA | Williams, Thomas J.,et al."Geochemical proxies for deep-sea temperature and nutrient content in cold-water bamboo corals".CHEMICAL GEOLOGY 654(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。