CCPortal
DOI10.1002/hyp.15075
Assessing the impact of distributed snow water equivalent calibration and assimilation of Copernicus snow water equivalent on modelled snow and streamflow performance
发表日期2024
ISSN0885-6087
EISSN1099-1085
起始页码38
结束页码2
卷号38期号:2
英文摘要Accuracy of the Copernicus snow water equivalent (SWE) product and the impact of SWE calibration and assimilation on modelled SWE and streamflow was evaluated. Daily snowpack measurements were made at 12 locations from 2016 to 2019 across a 4104 km2 mixed-forest basin in the Great Lakes region of central Ontario, Canada. Sub-basin daily SWE calculated from these sites, observed discharge, and lake levels were used to calibrate a hydrologic model developed using the Raven modelling framework. Copernicus SWE was bias corrected during the melt period using mean bias subtraction and was compared to daily basin average SWE calculated from the measured data. Bias corrected Copernicus SWE was assimilated into the models using a range of parameters and the parameterizations from the model calibration. The bias corrected Copernicus product agreed well with measured data and provided a good estimate of mean basin SWE demonstrating that the product shows promise for hydrology applications within the study region. Calibration to spatially distributed SWE substantially improved the basin scale SWE estimate while only slightly degrading the flow simulation demonstrating the value of including SWE in a multi-objective calibration formulation. The particle filter experiments yielded the best SWE estimation but moderately degraded the flow simulation. The particle filter experiments constrained by the calibrated snow parameters produced similar results to the experiments using the upper and lower bounds indicating that, in this study, model calibration prior to assimilation was not valuable. The calibrated models exhibited varying levels of skill in estimating SWE but demonstrated similar streamflow performance. This indicates that basin outlet streamflow can be accurately estimated using a model with a poor representation of distributed SWE. This may be sufficient for applications where estimating flow is the primary water management objective. However, in applications where understanding the physical processes of snow accumulation, melt and streamflow generation are important, such as assessing the impact of climate change on water resources, accurate representations of SWE are required and can be improved via multi-objective calibration or data assimilation, as demonstrated in this study. Bias corrected Copernicus snow water equivalent (SWE) agreed well with measured data demonstrating the products utility for hydrology applications. Calibration to lake levels, streamflow, and SWE substantially improved model performance compared to a model calibrated to lake levels and streamflow only, thus demonstrating the value of including SWE in multi-objective calibration. image
英文关键词Copernicus snow water equivalent (SWE); data assimilation; lake levels; multi-objective calibration; particle filter; raven hydrologic modelling framework; snow water equivalent (SWE); streamflow
语种英语
WOS研究方向Water Resources
WOS类目Water Resources
WOS记录号WOS:001155294300001
来源期刊HYDROLOGICAL PROCESSES
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/306373
作者单位Trent University; Ministry of Natural Resources & Forestry; University of Waterloo; Trent University; Trent University; Ministry of Natural Resources & Forestry; Trent University
推荐引用方式
GB/T 7714
. Assessing the impact of distributed snow water equivalent calibration and assimilation of Copernicus snow water equivalent on modelled snow and streamflow performance[J],2024,38(2).
APA (2024).Assessing the impact of distributed snow water equivalent calibration and assimilation of Copernicus snow water equivalent on modelled snow and streamflow performance.HYDROLOGICAL PROCESSES,38(2).
MLA "Assessing the impact of distributed snow water equivalent calibration and assimilation of Copernicus snow water equivalent on modelled snow and streamflow performance".HYDROLOGICAL PROCESSES 38.2(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
百度学术
百度学术中相似的文章
必应学术
必应学术中相似的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。