CCPortal
DOI10.1039/d4se00130c
From batch to flow: the effect of pH, current, and the crystal facets of Cu2O on electrochemical CO2 reduction
发表日期2024
ISSN2398-4902
起始页码8
结束页码11
卷号8期号:11
英文摘要As humanity is confronted by climate change, electrochemical CO2 reduction has become an important strategy for generating value-added chemicals whilst lowering carbon emissions. In this work, Cu2O nanoparticles with different morphologies and predominant exposed crystal facets, including nanocubes (Cu2O-NC) with (100) facets, nanoflowers (Cu2O-NF) with (110) facets, and octahedral structures (Cu2O-O) with (111) facets, are prepared, and compared as catalysts for the electrochemical CO2 reduction to C2+ products in a flow cell electrolyzer, to overcome the mass transfer limitations of CO2 in an H-cell and reach industrially relevant currents. To maximize the performance towards C2+ products, a parameter optimization (i.e. pH and current) was performed. Under the conditions of 150 mA cm(-2) and pH of 8.5, the Cu2O-NC revealed a maximum faradaic efficiency of 58% for C2+ products. Similar studies in an H-cell system have shown lower total C2+ FE of around 35-40% for the nanocubes, indicating an improvement and showcasing the advantages of using a gas-fed flow electrolyzer. Finally, the long-term stability of these materials was also evaluated. The results revealed that C2+ activity remains constant for four hours at 50%. However, a sharp decline was observed after five hours when GDE flooding occurs, leading to a dominant HER. To confirm, the electrode was washed and dried before re-utilizing it. Since the Cu2O largely recovers its initial C2+ activity (from 50% to 43%) albeit with a slightly different product composition, this confirms GDE flooding as the main cause of degradation. During the eCO(2)RR, Cu2O is reduced to metallic Cu, as proven by in situ Raman. As a result, the particle morphology is roughened, which is proven by ex situ SEM images. Subsequently, water penetrates the gas diffusion electrode more easily, inhibiting the diffusion of CO2, and alongside the electrowetting effect results in GDE flooding. In conclusion, this work explores the utilization of different Cu2O catalysts in a flow electrolyzer, revealing insights into higher currents, their stability issues, crystal facet dependency, and reaction environment, which was unexplored in previous literature where the focus was on H-cell testing, which evaluates the catalysts under less demanding and more controlled conditions that are less relevant for up-scaling and eventual commercialization. Based on these new insights, further improvements can be made to enhance the total C2+ FE and improve stability.
语种英语
WOS研究方向Chemistry ; Energy & Fuels ; Materials Science
WOS类目Chemistry, Physical ; Energy & Fuels ; Materials Science, Multidisciplinary
WOS记录号WOS:001217560700001
来源期刊SUSTAINABLE ENERGY & FUELS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/306086
作者单位University of Antwerp; University of Antwerp
推荐引用方式
GB/T 7714
. From batch to flow: the effect of pH, current, and the crystal facets of Cu2O on electrochemical CO2 reduction[J],2024,8(11).
APA (2024).From batch to flow: the effect of pH, current, and the crystal facets of Cu2O on electrochemical CO2 reduction.SUSTAINABLE ENERGY & FUELS,8(11).
MLA "From batch to flow: the effect of pH, current, and the crystal facets of Cu2O on electrochemical CO2 reduction".SUSTAINABLE ENERGY & FUELS 8.11(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
百度学术
百度学术中相似的文章
必应学术
必应学术中相似的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。