CCPortal
DOI10.1088/1748-9326/ad38ce
Evaluating the impact of peat soils and snow schemes on simulated active layer thickness at pan-Arctic permafrost sites
发表日期2024
ISSN1748-9326
起始页码19
结束页码5
卷号19期号:5
英文摘要Permafrost stability is significantly influenced by the thermal buffering effects of snow and active-layer peat soils. In the warm season, peat soils act as a barrier to downward heat transfer mainly due to their low thermal conductivity. In the cold season, the snowpack serves as a thermal insulator, retarding the release of heat from the soil to the atmosphere. Currently, many global land models overestimate permafrost soil temperature and active layer thickness (ALT), partially due to inaccurate representations of soil organic matter (SOM) density profiles and snow thermal insulation. In this study, we evaluated the impacts of SOM and snow schemes on ALT simulations at pan-Arctic permafrost sites using the Energy Exascale Earth System Model (E3SM) land model (ELM). We conducted simulations at the Circumpolar Active Layer Monitoring (CALM) sites across the pan-Arctic domain. We improved ELM-simulated site-level ALT using a knowledge-based hierarchical optimization procedure and examined the effects of precipitation-phase partitioning methods (PPMs), snow compaction schemes, and snow thermal conductivity schemes on simulated snow depth, soil temperature, ALT, and CO2 fluxes. Results showed that the optimized ELM significantly improved agreement with observed ALT (e.g. RMSE decreased from 0.83 m to 0.15 m). Our sensitivity analysis revealed that snow-related schemes significantly impact simulated snow thermal insulation levels, soil temperature, and ALT. For example, one of the commonly used snow thermal conductivity schemes (quadratic Sturm or SturmQua) generally produced warmer soil temperatures and larger ALT compared to the other two tested schemes. The SturmQua scheme also amplified the model's sensitivity to PPMs and predicted deeper ALTs than the other two snow schemes under both current and future climates. The study highlights the importance of accurately representing snow-related processes and peat soils in land models to enhance permafrost dynamics simulations.
英文关键词active layer thickness; permafrost; E3SM land model; snow thermal conductivity; soil organic matter; peat soils
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS记录号WOS:001207479800001
来源期刊ENVIRONMENTAL RESEARCH LETTERS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/304563
作者单位United States Department of Energy (DOE); Lawrence Berkeley National Laboratory
推荐引用方式
GB/T 7714
. Evaluating the impact of peat soils and snow schemes on simulated active layer thickness at pan-Arctic permafrost sites[J],2024,19(5).
APA (2024).Evaluating the impact of peat soils and snow schemes on simulated active layer thickness at pan-Arctic permafrost sites.ENVIRONMENTAL RESEARCH LETTERS,19(5).
MLA "Evaluating the impact of peat soils and snow schemes on simulated active layer thickness at pan-Arctic permafrost sites".ENVIRONMENTAL RESEARCH LETTERS 19.5(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
百度学术
百度学术中相似的文章
必应学术
必应学术中相似的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。