Climate Change Data Portal
DOI | 10.5194/essd-16-1771-2024 |
Spatial mapping of key plant functional traits in terrestrial ecosystems across China | |
An, Nannan; Lu, Nan; Chen, Weiliang; Chen, Yongzhe; Shi, Hao; Wu, Fuzhong; Fu, Bojie | |
发表日期 | 2024 |
ISSN | 1866-3508 |
EISSN | 1866-3516 |
起始页码 | 16 |
结束页码 | 4 |
卷号 | 16期号:4 |
英文摘要 | Trait-based approaches are of increasing concern in predicting vegetation changes and linking ecosystem structures to functions at large scales. However, a critical challenge for such approaches is acquiring spatially continuous plant functional trait maps. Here, six key plant functional traits were selected as they can reflect plant resource acquisition strategies and ecosystem functions, including specific leaf area (SLA), leaf dry matter content (LDMC), leaf N concentration (LNC), leaf P concentration (LPC), leaf area (LA) and wood density (WD). A total of 34 589 in situ trait measurements of 3447 seed plant species were collected from 1430 sampling sites in China and were used to generate spatial plant functional trait maps (similar to 1 km), together with environmental variables and vegetation indices based on two machine learning models (random forest and boosted regression trees). To obtain the optimal estimates, a weighted average algorithm was further applied to merge the predictions of the two models to derive the final spatial plant functional trait maps. The models showed good accuracy in estimating WD, LPC and SLA, with average R-2 values ranging from 0.48 to 0.68. In contrast, both the models had weak performance in estimating LDMC, with average R-2 values less than 0.30. Meanwhile, LA showed considerable differences between the two models in some regions. Climatic effects were more important than those of edaphic factors in predicting the spatial distributions of plant functional traits. Estimates of plant functional traits in northeastern China and the Qinghai-Tibetan Plateau had relatively high uncertainties due to sparse samplings, implying a need for more observations in these regions in the future. Our spatial trait maps could provide critical support for trait-based vegetation models and allow exploration of the relationships between vegetation characteristics and ecosystem functions at large scales. The six plant functional trait maps for China with 1 km spatial resolution are now available at https://doi.org/10.6084/m9.figshare.22351498 (An et al., 2023). |
语种 | 英语 |
WOS研究方向 | Geology ; Meteorology & Atmospheric Sciences |
WOS类目 | Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:001199997000001 |
来源期刊 | EARTH SYSTEM SCIENCE DATA
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/304461 |
作者单位 | Fujian Normal University; Chinese Academy of Sciences; Research Center for Eco-Environmental Sciences (RCEES); Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; University of Hong Kong |
推荐引用方式 GB/T 7714 | An, Nannan,Lu, Nan,Chen, Weiliang,et al. Spatial mapping of key plant functional traits in terrestrial ecosystems across China[J],2024,16(4). |
APA | An, Nannan.,Lu, Nan.,Chen, Weiliang.,Chen, Yongzhe.,Shi, Hao.,...&Fu, Bojie.(2024).Spatial mapping of key plant functional traits in terrestrial ecosystems across China.EARTH SYSTEM SCIENCE DATA,16(4). |
MLA | An, Nannan,et al."Spatial mapping of key plant functional traits in terrestrial ecosystems across China".EARTH SYSTEM SCIENCE DATA 16.4(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。