CCPortal
DOI10.3390/agriculture14030389
Comparative Analysis of Feature Importance Algorithms for Grassland Aboveground Biomass and Nutrient Prediction Using Hyperspectral Data
Zhao, Yue; Xu, Dawei; Li, Shuzhen; Tang, Kai; Yu, Hongliang; Yan, Ruirui; Li, Zhenwang; Wang, Xu; Xin, Xiaoping
发表日期2024
EISSN2077-0472
起始页码14
结束页码3
卷号14期号:3
英文摘要Estimating forage yield and nutrient composition using hyperspectral remote sensing is a major challenge. However, there is still a lack of comprehensive research on the optimal wavelength for the analysis of various nutrients in pasture. In this research, conducted in Hailar District, Hulunber City, Inner Mongolia Autonomous Region, China, 126 sets of hyperspectral data were collected, covering a spectral range of 350 to 1800 nanometers. The primary objective was to identify key spectral bands for estimating forage dry matter yield (DMY), nitrogen content (NC), neutral detergent fiber (NDF), and acid detergent fiber (ADF) using principal component analysis (PCA), random forests (RF), and SHapley Additive exPlanations (SHAP) analysis methods, and then the RF and Extra-Trees algorithm (ERT) model was used to predict aboveground biomass (AGB) and nutrient parameters using the optimized spectral bands and vegetation indices. Our approach effectively minimizes redundancy in hyperspectral data by selectively employing crucial spectral bands, thus improving the accuracy of forage nutrient estimation. PCA identified the most variable bands at 400 nm, 520-550 nm, 670-720 nm, and 930-950 nm, reflecting their general spectral significance rather than a link to specific forage nutrients. Further analysis using RF feature importance pinpointed influential bands, predominantly within 930-940 nm and 700-730 nm. SHAP analysis confirmed critical bands for DMY (965 nm, 712 nm, and 1652 nm), NC (1390 nm and 713 nm), ADF (1390 nm and 715-725 nm), and NDF (400 nm, 983 nm, 1350 nm, and 1800 nm). The fitting accuracy for ADF estimated using RF was lower (R2 = 0.58), while the fitting accuracy for other indicators was higher (R2 >= 0.59). The performance and prediction accuracy of ERT (R2 = 0.63) were noticeably superior to those of RF. In conclusion, our method effectively identifies influential bands, optimizing forage yield and quality estimation.
英文关键词remote sensing data analysis; forage quality assessment; spectral feature selection; agricultural resource management; environmental sensing technologies
语种英语
WOS研究方向Agriculture
WOS类目Agronomy
WOS记录号WOS:001191743900001
来源期刊AGRICULTURE-BASEL
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/304436
作者单位Chinese Academy of Agricultural Sciences; Institute of Agricultural Resources & Regional Planning, CAAS; Beijing Normal University; Yangzhou University
推荐引用方式
GB/T 7714
Zhao, Yue,Xu, Dawei,Li, Shuzhen,et al. Comparative Analysis of Feature Importance Algorithms for Grassland Aboveground Biomass and Nutrient Prediction Using Hyperspectral Data[J],2024,14(3).
APA Zhao, Yue.,Xu, Dawei.,Li, Shuzhen.,Tang, Kai.,Yu, Hongliang.,...&Xin, Xiaoping.(2024).Comparative Analysis of Feature Importance Algorithms for Grassland Aboveground Biomass and Nutrient Prediction Using Hyperspectral Data.AGRICULTURE-BASEL,14(3).
MLA Zhao, Yue,et al."Comparative Analysis of Feature Importance Algorithms for Grassland Aboveground Biomass and Nutrient Prediction Using Hyperspectral Data".AGRICULTURE-BASEL 14.3(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Yue]的文章
[Xu, Dawei]的文章
[Li, Shuzhen]的文章
百度学术
百度学术中相似的文章
[Zhao, Yue]的文章
[Xu, Dawei]的文章
[Li, Shuzhen]的文章
必应学术
必应学术中相似的文章
[Zhao, Yue]的文章
[Xu, Dawei]的文章
[Li, Shuzhen]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。