Climate Change Data Portal
DOI | 10.3390/su16083296 |
Evaluating the Impact of Heat Mitigation Strategies Using Added Urban Green Spaces during a Heatwave in a Medium-Sized City | |
Skarbit, Nora; Unger, Janos; Gal, Tamas | |
发表日期 | 2024 |
EISSN | 2071-1050 |
起始页码 | 16 |
结束页码 | 8 |
卷号 | 16期号:8 |
英文摘要 | Recognizing the growing trend of the urban population and the undeniable fact of global and regional climate change, it becomes increasingly important to explore how we can improve the livability of our cities not only in the distant future but also in the next few years. A critical aspect of this endeavor involves studying how we can effectively mitigate human heat load in urban areas. In our research, in the case of a medium-sized city (Szeged, Hungary), we examined the effect of surface modifications caused by vegetation on human thermal perception during the day and night of two heatwave days. To achieve this, we used the MUKLIMO_3 micro-scale climate model to simulate the thermal climate of Szeged, while the thermal load was assessed with the perceived temperature calculated by the Klima-Michel model. Our analysis also relied on the local climate zone (LCZ) system to describe the original land cover and the additional urban green spaces in the study area. We scrutinized the effects of added vegetation of different types and densities, as well as the presence of protective forests surrounding the city. Our findings revealed that the effect of the added vegetation can only be detected on the modified surfaces and in their immediate vicinity. Notably, dense urban greenery resulted in up to a 2-3 degrees C reduction in perceived temperature in certain areas during the daytime, highlighting the profound impact of targeted green space development. In addition, it is crucial to consider the airflow-blocking effect of woody vegetation, which can increase thermal load by 1-3 degrees C in the areas located in a downwind direction. Therefore, the changing regional climatic conditions (e.g., wind direction) and the development of the right type and location of urban green areas deserve special attention during modern urban planning processes. |
英文关键词 | urban climate modeling; local climate zones; land cover modification; urban green spaces; human thermal perception |
语种 | 英语 |
WOS研究方向 | Science & Technology - Other Topics ; Environmental Sciences & Ecology |
WOS类目 | Green & Sustainable Science & Technology ; Environmental Sciences ; Environmental Studies |
WOS记录号 | WOS:001210004000001 |
来源期刊 | SUSTAINABILITY
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/304328 |
作者单位 | Szeged University |
推荐引用方式 GB/T 7714 | Skarbit, Nora,Unger, Janos,Gal, Tamas. Evaluating the Impact of Heat Mitigation Strategies Using Added Urban Green Spaces during a Heatwave in a Medium-Sized City[J],2024,16(8). |
APA | Skarbit, Nora,Unger, Janos,&Gal, Tamas.(2024).Evaluating the Impact of Heat Mitigation Strategies Using Added Urban Green Spaces during a Heatwave in a Medium-Sized City.SUSTAINABILITY,16(8). |
MLA | Skarbit, Nora,et al."Evaluating the Impact of Heat Mitigation Strategies Using Added Urban Green Spaces during a Heatwave in a Medium-Sized City".SUSTAINABILITY 16.8(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。