CCPortal
DOI10.1007/s10044-024-01263-2
Spatio-temporal trajectory data modeling for fishing gear classification
Rodriguez-Albala, Juan Manuel; Pena, Alejandro; Melzi, Pietro; Morales, Aythami; Tolosana, Ruben; Fierrez, Julian; Vera-Rodriguez, Ruben; Ortega-Garcia, Javier
发表日期2024
ISSN1433-7541
EISSN1433-755X
起始页码27
结束页码2
卷号27期号:2
英文摘要International Organizations urge the protection of our oceans and their ecosystems due to their immeasurable importance to humankind. Since illegal fishing activities, commonly known as IUU fishing, cause irreparable damage to these ecosystems, concerned organisms are pushing to detect and combat IUU fishing practices. The automatic identification system allows to locate the position and trajectory of fishing vessels. In this study we address the task of detecting vessels' fishing gears based on the trajectory behavior defined by GPS position data, a useful task to prevent the proliferation of IUU fishing practices. We present a new database including trajectories that span 7 different fishing gears and analyze these as in a time sequence analysis problem. We leverage from feature extraction techniques from the online signature verification domain to model vessel trajectories, and extract relevant information in the form of both local and global feature sets. We show how, based on these sets of features, the kinematics of vessels according to different fishing gears can be effectively classified using common supervised learning algorithms with accuracies up to 90 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$90\%$$\end{document} . Furthermore, motivated by the concerns raised by several organizations on the adverse impact of bottom trawling on marine biodiversity, we present a binary classification experiment in which we were able to distinguish this kind of fishing gear with an accuracy of 99 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99\%$$\end{document} . We also illustrate in an ablation study the relevance of factors such as data availability and the sampling period to perform fishing gear classification. Compared to existing works, we highlight these factors, especially the importance of using sampling periods in the order of minutes instead of hours.
英文关键词Fishing gear classification; Database; Illegal fishing; Spatio-temporal trajectory data modeling; AI for social good; Biodiversity; Climate change
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001204395100001
来源期刊PATTERN ANALYSIS AND APPLICATIONS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/303653
作者单位Autonomous University of Madrid
推荐引用方式
GB/T 7714
Rodriguez-Albala, Juan Manuel,Pena, Alejandro,Melzi, Pietro,et al. Spatio-temporal trajectory data modeling for fishing gear classification[J],2024,27(2).
APA Rodriguez-Albala, Juan Manuel.,Pena, Alejandro.,Melzi, Pietro.,Morales, Aythami.,Tolosana, Ruben.,...&Ortega-Garcia, Javier.(2024).Spatio-temporal trajectory data modeling for fishing gear classification.PATTERN ANALYSIS AND APPLICATIONS,27(2).
MLA Rodriguez-Albala, Juan Manuel,et al."Spatio-temporal trajectory data modeling for fishing gear classification".PATTERN ANALYSIS AND APPLICATIONS 27.2(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rodriguez-Albala, Juan Manuel]的文章
[Pena, Alejandro]的文章
[Melzi, Pietro]的文章
百度学术
百度学术中相似的文章
[Rodriguez-Albala, Juan Manuel]的文章
[Pena, Alejandro]的文章
[Melzi, Pietro]的文章
必应学术
必应学术中相似的文章
[Rodriguez-Albala, Juan Manuel]的文章
[Pena, Alejandro]的文章
[Melzi, Pietro]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。