CCPortal
DOI10.3390/rs16050892
Performance of Algorithms for Retrieving Chlorophyll a Concentrations in the Arctic Ocean: Impact on Primary Production Estimates
Li, Juan; Matsuoka, Atsushi; Pang, Xiaoping; Massicotte, Philippe; Babin, Marcel
发表日期2024
EISSN2072-4292
起始页码16
结束页码5
卷号16期号:5
英文摘要Chlorophyll a concentration (Chl) is a key variable for estimating primary production (PP) through ocean-color remote sensing (OCRS). Accurate Chl estimates are crucial for better understanding of the spatio-temporal trends in PP in recent decades as a consequence of climate change. However, a number of studies have reported that currently operational chlorophyll a algorithms perform poorly in the Arctic Ocean (AO), largely due to the interference of colored and detrital material (CDM) with the phytoplankton signal in the visible part of the spectrum. To determine how and to what extent CDM biases the estimation of Chl, we evaluated the performances of eight currently available ocean-color algorithms: OC4v6, OC3Mv6, OC3V, OC4L, OC4P, AO.emp, GSM01 and AO.GSM. Our results suggest that the empirical AO.emp algorithm performs the best overall, but, for waters with high CDM a(cdm)(443) > 0.067 m(-1)), a common scenario in the Arctic, the two semi-analytical GSM models yield better performance. In addition, sensitivity analyses using a spectrally and vertically resolved Arctic primary-production model show that errors in Chl mostly propagate proportionally to PP estimates, with amplification of up to 7%. We also demonstrate that, the higher level of CDM in relation to Chl in the water column, the larger the bias in both Chl and PP estimates. Lastly, although the AO.GSM is the best overall performer among the algorithms tested, it tends to fail for a significant number of pixels (16.2% according to the present study), particularly for waters with high CDM. Our results therefore suggest the ongoing need to develop an algorithm that provides reasonable Chl estimates for a wide range of optically complex Arctic waters.
英文关键词Arctic Ocean; chlorophyll a algorithm; colored and detrital material; primary production
语种英语
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001183394500001
来源期刊REMOTE SENSING
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/303063
作者单位Wuhan University; Laval University; Wuhan University; University System Of New Hampshire; University of New Hampshire
推荐引用方式
GB/T 7714
Li, Juan,Matsuoka, Atsushi,Pang, Xiaoping,et al. Performance of Algorithms for Retrieving Chlorophyll a Concentrations in the Arctic Ocean: Impact on Primary Production Estimates[J],2024,16(5).
APA Li, Juan,Matsuoka, Atsushi,Pang, Xiaoping,Massicotte, Philippe,&Babin, Marcel.(2024).Performance of Algorithms for Retrieving Chlorophyll a Concentrations in the Arctic Ocean: Impact on Primary Production Estimates.REMOTE SENSING,16(5).
MLA Li, Juan,et al."Performance of Algorithms for Retrieving Chlorophyll a Concentrations in the Arctic Ocean: Impact on Primary Production Estimates".REMOTE SENSING 16.5(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Juan]的文章
[Matsuoka, Atsushi]的文章
[Pang, Xiaoping]的文章
百度学术
百度学术中相似的文章
[Li, Juan]的文章
[Matsuoka, Atsushi]的文章
[Pang, Xiaoping]的文章
必应学术
必应学术中相似的文章
[Li, Juan]的文章
[Matsuoka, Atsushi]的文章
[Pang, Xiaoping]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。