Climate Change Data Portal
DOI | 10.1111/gcb.17055 |
Dust storms increase the tolerance of phytoplankton to thermal and pH changes | |
Gonzalez-Olalla, Juan Manuel; Powell, James A.; Brahney, Janice | |
发表日期 | 2024 |
ISSN | 1354-1013 |
EISSN | 1365-2486 |
起始页码 | 30 |
结束页码 | 1 |
卷号 | 30期号:1 |
英文摘要 | Aquatic communities are increasingly subjected to multiple stressors through global change, including warming, pH shifts, and elevated nutrient concentrations. These stressors often surpass species tolerance range, leading to unpredictable consequences for aquatic communities and ecosystem functioning. Phytoplankton, as the foundation of the aquatic food web, play a crucial role in controlling water quality and the transfer of nutrients and energy to higher trophic levels. Despite the significance in understanding the effect of multiple stressors, further research is required to explore the combined impact of multiple stressors on phytoplankton. In this study, we used a combination of crossed experiment and mechanistic model to analyze the ecological and biogeochemical effects of global change on aquatic ecosystems and to forecast phytoplankton dynamics. We examined the effect of dust (0-75mgL(-1)), temperature (19-27 degrees C), and pH (6.3-7.3) on the growth rate of the algal species Scenedesmus obliquus. Furthermore, we carried out a geospatial analysis to identify regions of the planet where aquatic systems could be most affected by atmospheric dust deposition. Our mechanistic model and our empirical data show that dust exerts a positive effect on phytoplankton growth rate, broadening its thermal and pH tolerance range. Finally, our geospatial analysis identifies several high-risk areas including the highlands of the Tibetan Plateau, western United States, South America, central and southern Africa, central Australia as well as the Mediterranean region where dust-induced changes are expected to have the greatest impacts. Overall, our study shows that increasing dust storms associated with a more arid climate and land degradation can reverse the negative effects of high temperatures and low pH on phytoplankton growth, affecting the biogeochemistry of aquatic ecosystems and their role in the cycles of the elements and tolerance to global change. |
英文关键词 | aerosol deposition; dust; growth rate; interactive effects; mechanistic model; pH; phytoplankton dynamic; temperature |
语种 | 英语 |
WOS研究方向 | Biodiversity & Conservation ; Environmental Sciences & Ecology |
WOS类目 | Biodiversity Conservation ; Ecology ; Environmental Sciences |
WOS记录号 | WOS:001151213000069 |
来源期刊 | GLOBAL CHANGE BIOLOGY
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/302864 |
作者单位 | Utah System of Higher Education; Utah State University; Utah System of Higher Education; Utah State University |
推荐引用方式 GB/T 7714 | Gonzalez-Olalla, Juan Manuel,Powell, James A.,Brahney, Janice. Dust storms increase the tolerance of phytoplankton to thermal and pH changes[J],2024,30(1). |
APA | Gonzalez-Olalla, Juan Manuel,Powell, James A.,&Brahney, Janice.(2024).Dust storms increase the tolerance of phytoplankton to thermal and pH changes.GLOBAL CHANGE BIOLOGY,30(1). |
MLA | Gonzalez-Olalla, Juan Manuel,et al."Dust storms increase the tolerance of phytoplankton to thermal and pH changes".GLOBAL CHANGE BIOLOGY 30.1(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。