CCPortal
DOI10.1371/journal.pone.0291800
A Bayesian model for predicting monthly fire frequency in Kenya
Orero, Levi; Omondi, Evans Otieno; Omolo, Bernard Oguna
发表日期2024
ISSN1932-6203
起始页码19
结束页码1
卷号19期号:1
英文摘要This study presents a comprehensive analysis of historical fire and climatic data to estimate the monthly frequency of vegetation fires in Kenya. This work introduces a statistical model that captures the behavior of fire count data, incorporating temporal explanatory factors and emphasizing the predictive significance of maximum temperature and rainfall. By employing Bayesian approaches, the paper integrates literature information, simulation studies, and real-world data to enhance model performance and generate more precise prediction intervals that encompass actual fire counts. To forecast monthly fire occurrences aggregated from the Moderate Resolution Imaging Spectroradiometer (MODIS) data in Kenya (2000-2018), the study utilizes maximum temperature and rainfall values derived from global GeoTiff (.tif) files sourced from the WorldClim database. The evaluation of the widely used Negative Binomial (NB) model and the proposed Bayesian Negative Binomial (BNB) model reveals the superiority of the latter in accounting for seasonal patterns and long-term trends. The simulation results demonstrate that the BNB model outperforms the NB model in terms of Root Mean Square Error (RMSE), and Mean Absolute Scaled Error (MASE) on both training and testing datasets. Furthermore, when applied to real data, the Bayesian Negative Binomial model exhibits better performance on the test dataset, showcasing lower RMSE (163.22 vs. 166.67), lower MASE (1.12 vs. 1.15), and reduced bias (-2.52% vs. -2.62%) compared to the NB model. The Bayesian model also offers prediction intervals that closely align with actual predictions, indicating its flexibility in forecasting the frequency of monthly fires. These findings underscore the importance of leveraging past data to forecast the future behavior of the fire regime, thus providing valuable insights for fire control strategies in Kenya. By integrating climatic factors and employing Bayesian modeling techniques, the study contributes to the understanding and prediction of vegetation fires, ultimately supporting proactive measures in mitigating their impact.
语种英语
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:001158471300021
来源期刊PLOS ONE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/302798
作者单位Strathmore University; African Population & Health Research Centre; University of Witwatersrand
推荐引用方式
GB/T 7714
Orero, Levi,Omondi, Evans Otieno,Omolo, Bernard Oguna. A Bayesian model for predicting monthly fire frequency in Kenya[J],2024,19(1).
APA Orero, Levi,Omondi, Evans Otieno,&Omolo, Bernard Oguna.(2024).A Bayesian model for predicting monthly fire frequency in Kenya.PLOS ONE,19(1).
MLA Orero, Levi,et al."A Bayesian model for predicting monthly fire frequency in Kenya".PLOS ONE 19.1(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Orero, Levi]的文章
[Omondi, Evans Otieno]的文章
[Omolo, Bernard Oguna]的文章
百度学术
百度学术中相似的文章
[Orero, Levi]的文章
[Omondi, Evans Otieno]的文章
[Omolo, Bernard Oguna]的文章
必应学术
必应学术中相似的文章
[Orero, Levi]的文章
[Omondi, Evans Otieno]的文章
[Omolo, Bernard Oguna]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。