CCPortal
DOI10.3390/w16060896
Identification of Time-Varying Conceptual Hydrological Model Parameters with Differentiable Parameter Learning
Lian, Xie; Hu, Xiaolong; Shi, Liangsheng; Shao, Jinhua; Bian, Jiang; Cui, Yuanlai
发表日期2024
EISSN2073-4441
起始页码16
结束页码6
卷号16期号:6
英文摘要The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage change. This study employed differentiable parameter learning (dPL) to identify the time-varying parX1 in the GR4neige across 671 catchments within the United States. We built two types of dPL, including static and dynamic parameter networks, to assess the advantages of the time-varying parameter. In the dynamic parameter network, we evaluated the impact of potential evapotranspiration (PET), precipitation (P), temperature (T), soil moisture (SM), and normalized difference vegetation index (NDVI) datasets on the performance of dPL. We then compared dPL with the empirical functional method (fm). The results demonstrated that the dynamic parameter network outperformed the static parameter network in streamflow estimation. There were differences in streamflow estimation among the dynamic parameter network driven by various input features. In humid catchments, simultaneously incorporating all five factors, including PET, P, T, SM, and the NDVI, achieved optimal streamflow simulation accuracy. In arid catchments, it was preferable to introduce PET, T, and the NDVI separately for improved performance. dPL significantly outperformed the empirical fm in estimating streamflow and uncalibrated intermediate variables, like evapotranspiration (ET). Both the derived parX1 from dPL and the empirical fm exhibited significant spatiotemporal variation across 671 catchments. Notably, compared to parX1 obtained through the empirical fm, parX1 derived from dPL exhibited a distinct spatial clustering pattern. This study highlights the potential of dPL in enhancing model accuracy and contributes to understanding the spatiotemporal variation characteristics of parX1 under the influence of climate factors, soil conditions, and vegetation change.
英文关键词streamflow estimation; time-varying parameters; deep learning; differentiable parameter learning
语种英语
WOS研究方向Environmental Sciences & Ecology ; Water Resources
WOS类目Environmental Sciences ; Water Resources
WOS记录号WOS:001192875000001
来源期刊WATER
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/302185
作者单位Wuhan University
推荐引用方式
GB/T 7714
Lian, Xie,Hu, Xiaolong,Shi, Liangsheng,et al. Identification of Time-Varying Conceptual Hydrological Model Parameters with Differentiable Parameter Learning[J],2024,16(6).
APA Lian, Xie,Hu, Xiaolong,Shi, Liangsheng,Shao, Jinhua,Bian, Jiang,&Cui, Yuanlai.(2024).Identification of Time-Varying Conceptual Hydrological Model Parameters with Differentiable Parameter Learning.WATER,16(6).
MLA Lian, Xie,et al."Identification of Time-Varying Conceptual Hydrological Model Parameters with Differentiable Parameter Learning".WATER 16.6(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lian, Xie]的文章
[Hu, Xiaolong]的文章
[Shi, Liangsheng]的文章
百度学术
百度学术中相似的文章
[Lian, Xie]的文章
[Hu, Xiaolong]的文章
[Shi, Liangsheng]的文章
必应学术
必应学术中相似的文章
[Lian, Xie]的文章
[Hu, Xiaolong]的文章
[Shi, Liangsheng]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。