Climate Change Data Portal
DOI | 10.1002/solr.202300965 |
Improved Hole Extraction and Band Alignment via Interface Modification in Hole Transport Material-Free Ag/Bi Double Perovskite Solar Cells | |
Schmitz, Fabian; Bhatia, Ribhu; Burkhart, Julian; Schweitzer, Pascal; Allione, Marco; Gallego, Jaime; Piotrowski, Piotr; Cajzl, Jakub; Paszke, Piotr; Mohan Das, Gour; Pawlak, Dorota A.; Bella, Federico; Schlettwein, Derck; Lamberti, Francesco; Meloni, Simone; Gatti, Teresa | |
发表日期 | 2024 |
ISSN | 2367-198X |
起始页码 | 8 |
结束页码 | 6 |
卷号 | 8期号:6 |
英文摘要 | Within one decade, lead halide perovskite solar cells have reached power conversion efficiencies (PCEs) compatible with that of silicon solar cells. While in the beginning, they suffered from short device lifetimes, those have also been strongly improved over time. However, their content of toxic lead still poses a risk of environmental pollution and human health on exposure. The double perovskite (DP) Cs2AgBiBr6 offers the potential to be a lead-free alternative light-harvesting material. Herein, the fabrication of hole transport material (HTM)-free Cs2AgBiBr6-based solar cells is presented, in which the DP surface is modified via a n-butylammonium posttreatment to create a 2D/3D mixed interface. Additionally, the commonly utilized metal electrode and HTM are substituted with a carbon black back electrode (CBE) consisting of up-cycled biowaste. Through the 2D/3D interface modification, charge recombination is suppressed, and band alignment is improved at the perovskite/CBE interface. Additionally, density functional theory calculations reveal that an increasing 2D modification thickness enhances the probability for holes in Cs2AgBiBr6 to be located close to the perovskite/CBE interface, further supporting their extraction. Overall, the PCE of the HTM-free solar cells is improved through the implementation of a low-cost and end-of-waste fabrication strategy. Herein, a 2D/3D modification is applied through n-butylammonium treatment to a Cs2AgBiBr6 perovskite thin film to fabricate hole transport material-free solar cells, bearing carbon black electrodes. The 2D/3D modification improves the band alignment of the perovskite toward the hole selective contact, while strongly reducing the device material and processing costs.image (c) 2024 WILEY-VCH GmbH |
英文关键词 | carbon-based perovskite solar cells; hole transport material-free perovskite solar cells; interfacial engineering; lead-free perovskite solar cells; silver-bismuth double perovskites |
语种 | 英语 |
WOS研究方向 | Energy & Fuels ; Materials Science |
WOS类目 | Energy & Fuels ; Materials Science, Multidisciplinary |
WOS记录号 | WOS:001155047200001 |
来源期刊 | SOLAR RRL
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/302041 |
作者单位 | Justus Liebig University Giessen; University of Ferrara; Justus Liebig University Giessen; Polytechnic University of Turin; University of Padua; University of Padua |
推荐引用方式 GB/T 7714 | Schmitz, Fabian,Bhatia, Ribhu,Burkhart, Julian,et al. Improved Hole Extraction and Band Alignment via Interface Modification in Hole Transport Material-Free Ag/Bi Double Perovskite Solar Cells[J],2024,8(6). |
APA | Schmitz, Fabian.,Bhatia, Ribhu.,Burkhart, Julian.,Schweitzer, Pascal.,Allione, Marco.,...&Gatti, Teresa.(2024).Improved Hole Extraction and Band Alignment via Interface Modification in Hole Transport Material-Free Ag/Bi Double Perovskite Solar Cells.SOLAR RRL,8(6). |
MLA | Schmitz, Fabian,et al."Improved Hole Extraction and Band Alignment via Interface Modification in Hole Transport Material-Free Ag/Bi Double Perovskite Solar Cells".SOLAR RRL 8.6(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。