CCPortal
DOI10.1007/s00477-024-02711-5
A new approach for hydrograph data interpolation and outlier removal for vector autoregressive modelling: a case study from the Odra/Oder River
Halicki, Michal; Niedzielski, Tomasz
发表日期2024
ISSN1436-3240
EISSN1436-3259
英文摘要This study presents a new approach for predicting water levels of the Odra/Oder river using vector autoregressive models (VAR). We use water level time series from 27 gauging stations, on which we interpolate no-data gaps using the LinAR method and detect outliers with two separate methods: the extreme values (EV) approach and the isolation forest (IFO) algorithm. Before removing potential outliers, we propose a hydrological evaluation based on multivariate data analysis. Finally, we consider three separate data scenarios, i.e. LinAR (no outlier rejection), EV, and IFO. VAR models for six prediction gauges were built in a moving window manner on the most recent 720 hourly water levels prior to each prediction. The analysis covered the time range from January 2016 to May 2022 and resulted in approximate to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\approx }$$\end{document} 1,000,000 water level forecasts (3 scenarios x 6 gauges x 55,000 hourly time steps) with lead time of 72 h. The analysis of root mean squared error (RMSE) indicates that the VAR model performs well, especially for 24-hour predictions, with RMSE values ranging from 8 to 28 cm. The model was also found to have skills in predicting a rising limb of a hydrograph. Our numerical experiments showed the susceptibility of the VAR predictions to artefacts. The IFO method was found to detect outliers skilfully, which allowed to produce the most accurate VAR-based predictions.
英文关键词Water level; VAR model; Predictions; Outlier detection; Odra River
语种英语
WOS研究方向Engineering ; Environmental Sciences & Ecology ; Mathematics ; Water Resources
WOS类目Engineering, Environmental ; Engineering, Civil ; Environmental Sciences ; Statistics & Probability ; Water Resources
WOS记录号WOS:001201313800001
来源期刊STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/301081
作者单位University of Wroclaw
推荐引用方式
GB/T 7714
Halicki, Michal,Niedzielski, Tomasz. A new approach for hydrograph data interpolation and outlier removal for vector autoregressive modelling: a case study from the Odra/Oder River[J],2024.
APA Halicki, Michal,&Niedzielski, Tomasz.(2024).A new approach for hydrograph data interpolation and outlier removal for vector autoregressive modelling: a case study from the Odra/Oder River.STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT.
MLA Halicki, Michal,et al."A new approach for hydrograph data interpolation and outlier removal for vector autoregressive modelling: a case study from the Odra/Oder River".STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT (2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Halicki, Michal]的文章
[Niedzielski, Tomasz]的文章
百度学术
百度学术中相似的文章
[Halicki, Michal]的文章
[Niedzielski, Tomasz]的文章
必应学术
必应学术中相似的文章
[Halicki, Michal]的文章
[Niedzielski, Tomasz]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。