Climate Change Data Portal
DOI | 10.3934/energy.2024012 |
Modeling influence of weather variables on energy consumption in an agricultural research institute in Ibadan, Nigeria | |
Abu Rahaman; Amakor, John; Kazeem, Rasaq; Olugasa, Temilola; Ajide, Olusegun; Idusuyi, Nosa; Jen, Tien -Chien; Akinlabi, Esther | |
发表日期 | 2024 |
ISSN | 2333-8326 |
EISSN | 2333-8334 |
起始页码 | 12 |
结束页码 | 1 |
卷号 | 12期号:1 |
英文摘要 | Climate change is having a significant impact on weather variables like temperature, humidity, precipitation, solar radiation, daylight duration, wind speed, etc. These weather variables are key indicators that affect electricity demand and consumption. Hence, understanding the significance of weather elements on energy needs and consumption is important to be able to adapt, strategize, and predict the effect of the changing climate on the required energy of an organization. This study aims to investigate the relationship between changing weather elements and electricity consumption, employing Multivariate Linear Regression (MLR), Support Vector Regressions (SVR), and Artificial Neural Network (ANN) models to predict the effect of weather changes on energy consumption. The following approaches were engaged for this study: Creating a catalog of weather elements and parameters of energy need or its consumption; analyzing and correlating electrical power consumption to weather factors; and developing prediction models-MLR, SVR, and ANN to predict the significance of the change in the variables of weather on the electrical energy consumption. Among the weather variables considered, temperature emerged as the most influential factor affecting electricity consumption, displaying the highest correlation. The monthly total pattern for electricity use for the case study area followed a similar pattern as the mean apparent temperature. Of the three models (MLR, SVR, and ANN) developed in this study, the ANN model yielded the best predictive performance, with Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) of 2.733%, 1.292%, and 4.66%, respectively. Notably, the ANN model outperformed the other models (MLR and SVR) by more than 20% across the predictive performance metrics employed. |
英文关键词 | ANN; weather variable; MLR; energy consumption; SVR |
语种 | 英语 |
WOS研究方向 | Energy & Fuels |
WOS类目 | Energy & Fuels |
WOS记录号 | WOS:001155851900002 |
来源期刊 | AIMS ENERGY |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/301047 |
作者单位 | University of Ibadan; CGIAR; International Institute of Tropical Agriculture (IITA); University of Johannesburg; Northumbria University |
推荐引用方式 GB/T 7714 | Abu Rahaman,Amakor, John,Kazeem, Rasaq,et al. Modeling influence of weather variables on energy consumption in an agricultural research institute in Ibadan, Nigeria[J],2024,12(1). |
APA | Abu Rahaman.,Amakor, John.,Kazeem, Rasaq.,Olugasa, Temilola.,Ajide, Olusegun.,...&Akinlabi, Esther.(2024).Modeling influence of weather variables on energy consumption in an agricultural research institute in Ibadan, Nigeria.AIMS ENERGY,12(1). |
MLA | Abu Rahaman,et al."Modeling influence of weather variables on energy consumption in an agricultural research institute in Ibadan, Nigeria".AIMS ENERGY 12.1(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。