CCPortal
DOI10.3389/fenvs.2024.1371445
Use of remote sensing and image processing for identification of wild orchids
Ahmed, Shara; Lightbown, Jack; Rutter, Simon R.; Basu, Nabanita; Nicholson, Catherine E.; Perry, Justin J.; Dean, John R.
发表日期2024
EISSN2296-665X
起始页码12
卷号12
英文摘要A novel multi-technique approach has been applied for the identification and mapping of wild orchids using a combination of remote sensing and spectral image analysis. The five orchid species identified were the common spotted-orchid (Dactylorhiza fuchsia), heath spotted-orchid (Dactylorhiza maculata), pyramidal orchid (Anacamptis pyramidalis), heath fragrant-orchid (Gymnadenia borealis), and the dark-red helleborine (Epipactis atrorubens). Field studies have been done using a hand-held spectrometer operating in the 400-700 nm visible spectrum, photogrammetry using a digital camera as well as a multispectral image camera operating at the specific spectral bands of 450 nm (blue), 560 nm (green), 650 nm (red), 730 nm (red edge) and 840 nm (near-infrared) attached to an unmanned aerial vehicle Data analysis, using the hand-held spectrometer, followed by pattern recognition using principal component analysis and partial least squares-discriminant analysis, have identified the key distinguishing wavelengths for identification of the 5 orchid types as 400, 410, 420 and 560 nm. The use of remote sensing, using the UAV-MSI, and application of a dedicated spectral index has enabled field identification of the orchids. Finally, object-based image analysis of field gathered photogrammetry imagery, has enabled use of shape, size, and color to identify and distinguish orchid species. The developed data analytic tool, using random forest classification, can be used to identify and characterize wild orchids across multiple sites within their short lifespan with an accuracy of 86%. Any longer-term study would provide invaluable information on the diversity and complexity of orchid habitat, population variation both intra- and inter-site location, as well as the impact of climate change.
英文关键词orchids; unmanned aerial vehicle; multispectral imaging; photogrammetry; object-based image analysis
语种英语
WOS研究方向Environmental Sciences & Ecology
WOS类目Environmental Sciences
WOS记录号WOS:001216774800001
来源期刊FRONTIERS IN ENVIRONMENTAL SCIENCE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/300477
作者单位Northumbria University
推荐引用方式
GB/T 7714
Ahmed, Shara,Lightbown, Jack,Rutter, Simon R.,et al. Use of remote sensing and image processing for identification of wild orchids[J],2024,12.
APA Ahmed, Shara.,Lightbown, Jack.,Rutter, Simon R..,Basu, Nabanita.,Nicholson, Catherine E..,...&Dean, John R..(2024).Use of remote sensing and image processing for identification of wild orchids.FRONTIERS IN ENVIRONMENTAL SCIENCE,12.
MLA Ahmed, Shara,et al."Use of remote sensing and image processing for identification of wild orchids".FRONTIERS IN ENVIRONMENTAL SCIENCE 12(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ahmed, Shara]的文章
[Lightbown, Jack]的文章
[Rutter, Simon R.]的文章
百度学术
百度学术中相似的文章
[Ahmed, Shara]的文章
[Lightbown, Jack]的文章
[Rutter, Simon R.]的文章
必应学术
必应学术中相似的文章
[Ahmed, Shara]的文章
[Lightbown, Jack]的文章
[Rutter, Simon R.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。