CCPortal
DOI10.1109/TGRS.2024.3389780
CO2Seg: Automatic CO2 Segmentation From 4-D Seismic Image Using Convolutional Vision Transformer
Chen, Gui; Liu, Yang; Di, Xi; Zhang, Haoran
发表日期2024
ISSN0196-2892
EISSN1558-0644
起始页码62
卷号62
英文摘要To tackle the pressing issue of climate change stemming from carbon emissions, carbon capture and storage (CCS) projects have emerged worldwide, which aim to store carbon dioxide (CO2) produced during industrial production in subsurface geological structures. To ensure the efficacy of these projects, 4-D seismic surveys are conducted to monitor the stored CO2 and identify potential leakage at an early stage. In recent years, deep learning (DL) has been widely employed for seismic data interpretation, which has shown promising results in terms of objectivity and efficiency when compared to manual interpretation. In this study, we address the CO2 monitoring challenge using a 3-D encoder-decoder network with convolutional vision transformer (CvT) called CvTNet, through the supervised learning scheme. By formulating the CO2 monitoring task as an image segmentation problem, we use CvTNet to generate a 3-D CO2 probability image from a 4-D seismic image. CvTNet leverages the CvT module, which provides superior dynamic attention and global context compared to convolutional neural networks. We evaluate the effectiveness of CvTNet on the Sleipner CCS project, using a 4-D seismic image (comprising a 3-D baseline image from 1994 and a 3-D time-lapse image from 2010) and a CO2 probability image from 2010 as the CvTNet training input and label, respectively. We apply the trained model to seismic images from other monitoring years to analyze CO2 plume growth during the Sleipner CCS project. Tests indicate that CvTNet achieves higher CO2 segmentation accuracy than U-Net and can be generalized across other 4-D seismic images.
英文关键词4-D seismic image; carbon capture and storage (CCS); carbon dioxide (CO2) segmentation; convolutional vision transformer (CvT); deep learning (DL); multihead self-attention (MSA)
语种英语
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001225891900022
来源期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/299620
作者单位China University of Petroleum; China University of Petroleum; China National Petroleum Corporation; China University of Petroleum
推荐引用方式
GB/T 7714
Chen, Gui,Liu, Yang,Di, Xi,et al. CO2Seg: Automatic CO2 Segmentation From 4-D Seismic Image Using Convolutional Vision Transformer[J],2024,62.
APA Chen, Gui,Liu, Yang,Di, Xi,&Zhang, Haoran.(2024).CO2Seg: Automatic CO2 Segmentation From 4-D Seismic Image Using Convolutional Vision Transformer.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,62.
MLA Chen, Gui,et al."CO2Seg: Automatic CO2 Segmentation From 4-D Seismic Image Using Convolutional Vision Transformer".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 62(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Gui]的文章
[Liu, Yang]的文章
[Di, Xi]的文章
百度学术
百度学术中相似的文章
[Chen, Gui]的文章
[Liu, Yang]的文章
[Di, Xi]的文章
必应学术
必应学术中相似的文章
[Chen, Gui]的文章
[Liu, Yang]的文章
[Di, Xi]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。