CCPortal
DOI10.1016/j.ijggc.2024.104072
Reduced-order models for the greenhouse gas leakage prediction from depleted hydrocarbon reservoirs using machine learning methods
Liu, Lei; Mehana, Mohamed; Chen, Bailian; Prodanovic, Masa; Pyrcz, Michael J.; Pawar, Rajesh
发表日期2024
ISSN1750-5836
EISSN1878-0148
起始页码132
卷号132
英文摘要Geologic storage of carbon dioxide (CO2) is one of the potential technological options to mitigate human -induced climate change. Depleted hydrocarbon reservoirs are promising candidates for storing CO2. However, these reservoirs contain residual hydrocarbons that may migrate beyond primary reservoirs during CO2 storage operations. Therefore, it is imperative to quantify the leakage risks of residual hydrocarbons (primarily methane) and CO2 to shallow aquifers. We focus on developing models that quantify leakage risks from wellbores that provide potential leakage pathways. To offset the computational intensity of high-fidelity reservoir simulations, we develop a Reduced -order model (ROM) enabling fast and accurate CO2 and hydrocarbon leakage predictions through wellbores. The ROM is generated using a dataset of 1000 high-fidelity, compositional reservoir simulations of CO2 injection into generic hydrocarbon reservoirs. The input parameters include reservoir depth, permeability, net to the gross ratio (NTG), reservoir pressure multiplier, wellbore permeability, average water saturation, oil compositions, and time. We analyze the performance of various ROM development techniques, including multivariate adaptive regression splines, gradient boosting, and neural networks. While all ROM development techniques yield excellent agreement with R2 higher than 0.95, the neural network model performs best compared to the other two methods. Furthermore, we explore developing a ROM as a collection of multiple sub -ROMs to improve accuracy across a wide range of predictions. We observe that using a set of sub -ROMs outperforms the prediction accuracy of a single ROM. Our work enables fast and reliable risk -assessment tools for CO2 geologic storage in depleted hydrocarbon fields.
英文关键词Greenhouse gas; CO2 andCH4 leakage; Machine learning
语种英语
WOS研究方向Science & Technology - Other Topics ; Energy & Fuels ; Engineering
WOS类目Green & Sustainable Science & Technology ; Energy & Fuels ; Engineering, Environmental ; Engineering, Chemical
WOS记录号WOS:001162442200001
来源期刊INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/299604
作者单位University of Texas System; University of Texas Austin; United States Department of Energy (DOE); Los Alamos National Laboratory; University of Texas System; University of Texas Austin
推荐引用方式
GB/T 7714
Liu, Lei,Mehana, Mohamed,Chen, Bailian,et al. Reduced-order models for the greenhouse gas leakage prediction from depleted hydrocarbon reservoirs using machine learning methods[J],2024,132.
APA Liu, Lei,Mehana, Mohamed,Chen, Bailian,Prodanovic, Masa,Pyrcz, Michael J.,&Pawar, Rajesh.(2024).Reduced-order models for the greenhouse gas leakage prediction from depleted hydrocarbon reservoirs using machine learning methods.INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL,132.
MLA Liu, Lei,et al."Reduced-order models for the greenhouse gas leakage prediction from depleted hydrocarbon reservoirs using machine learning methods".INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL 132(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Lei]的文章
[Mehana, Mohamed]的文章
[Chen, Bailian]的文章
百度学术
百度学术中相似的文章
[Liu, Lei]的文章
[Mehana, Mohamed]的文章
[Chen, Bailian]的文章
必应学术
必应学术中相似的文章
[Liu, Lei]的文章
[Mehana, Mohamed]的文章
[Chen, Bailian]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。