CCPortal
DOI10.3390/atmos15040440
XCO2 Super-Resolution Reconstruction Based on Spatial Extreme Random Trees
Li, Xuwen; Jiang, Sheng; Wang, Xiangyuan; Wang, Tiantian; Zhang, Su; Guo, Jinjin; Jiao, Donglai
发表日期2024
EISSN2073-4433
起始页码15
结束页码4
卷号15期号:4
英文摘要Carbon dioxide (CO2) is currently the most harmful greenhouse gas in the atmosphere. Obtaining long-term, high-resolution atmospheric column CO2 concentration (XCO2) datasets is of great practical significance for mitigating the greenhouse effect, identifying and controlling carbon emission sources, and achieving carbon cycle management. However, mainstream satellite observations provide XCO2 datasets with coarse spatial resolution, which is insufficient to support the needs of higher-precision research. To address this gap, in this study, we integrate spatial information with the extreme random trees model and develop a new machine learning model called spatial extreme random trees (SExtraTrees) to reconstruct a 1 km spatial resolution XCO2 dataset for China from 2016 to 2020. The results indicate that the predictive ability of spatial extreme random trees is more stable and has higher fitting accuracy compared to other methods. Overall, XCO2 in China shows an increasing trend year by year, with the spatial distribution revealing significantly higher XCO2 levels in eastern coastal regions compared to western inland areas. The contributions of this study are primarily in the following areas: (1) Considering the spatial heterogeneity of XCO2 and combining spatial features with the advantages of machine learning, we construct the spatial extreme random trees model, which is verified to have high predictive accuracy. (2) Using the spatial extreme random trees model, we reconstruct high-resolution XCO(2 )datasets for China from 2016 to 2020, providing data support for carbon emission reduction and related decision making. (3) Based on the generated dataset, we analyze the spatiotemporal distribution patterns of XCO2 in China, thereby improving emission reduction policies and sustainable development measures.
英文关键词XCO2; spatial downscaling; SExtraTrees; high resolution; spatial features
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS记录号WOS:001211153300001
来源期刊ATMOSPHERE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/299477
作者单位Nanjing University of Posts & Telecommunications
推荐引用方式
GB/T 7714
Li, Xuwen,Jiang, Sheng,Wang, Xiangyuan,et al. XCO2 Super-Resolution Reconstruction Based on Spatial Extreme Random Trees[J],2024,15(4).
APA Li, Xuwen.,Jiang, Sheng.,Wang, Xiangyuan.,Wang, Tiantian.,Zhang, Su.,...&Jiao, Donglai.(2024).XCO2 Super-Resolution Reconstruction Based on Spatial Extreme Random Trees.ATMOSPHERE,15(4).
MLA Li, Xuwen,et al."XCO2 Super-Resolution Reconstruction Based on Spatial Extreme Random Trees".ATMOSPHERE 15.4(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Xuwen]的文章
[Jiang, Sheng]的文章
[Wang, Xiangyuan]的文章
百度学术
百度学术中相似的文章
[Li, Xuwen]的文章
[Jiang, Sheng]的文章
[Wang, Xiangyuan]的文章
必应学术
必应学术中相似的文章
[Li, Xuwen]的文章
[Jiang, Sheng]的文章
[Wang, Xiangyuan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。