CCPortal
DOI10.3389/fpls.2024.1302435
Predicting carob tree physiological parameters under different irrigation systems using Random Forest and Planet satellite images
Garofalo, Simone Pietro; Giannico, Vincenzo; Lorente, Beatriz; Garcia, Antonio Jose Garcia; Vivaldi, Gaetano Alessandro; Thameur, Afwa; Salcedo, Francisco Pedrero
发表日期2024
ISSN1664-462X
起始页码15
卷号15
英文摘要Introduction In the context of climate change, monitoring the spatial and temporal variability of plant physiological parameters has become increasingly important. Remote spectral imaging and GIS software have shown effectiveness in mapping field variability. Additionally, the application of machine learning techniques, essential for processing large data volumes, has seen a significant rise in agricultural applications. This research was focused on carob tree, a drought-resistant tree crop spread through the Mediterranean basin. The study aimed to develop robust models to predict the net assimilation and stomatal conductance of carob trees and to use these models to analyze seasonal variability and the impact of different irrigation systems.Methods Planet satellite images were acquired on the day of field data measurement. The reflectance values of Planet spectral bands were used as predictors to develop the models. The study employed the Random Forest modeling approach, and its performances were compared with that of traditional multiple linear regression.Results and discussion The findings reveal that Random Forest, utilizing Planet spectral bands as predictors, achieved high accuracy in predicting net assimilation (R-2 = 0.81) and stomatal conductance (R-2 = 0.70), with the yellow and red spectral regions being particularly influential. Furthermore, the research indicates no significant difference in intrinsic water use efficiency between the various irrigation systems and rainfed conditions. This work highlighted the potential of combining satellite remote sensing and machine learning in precision agriculture, with the goal of the efficient monitoring of physiological parameters.
英文关键词remote sensing; physiology modeling; carob tree; machine learning; Random Forest regression
语种英语
WOS研究方向Plant Sciences
WOS类目Plant Sciences
WOS记录号WOS:001194707900001
来源期刊FRONTIERS IN PLANT SCIENCE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/298800
作者单位Universita degli Studi di Bari Aldo Moro; Consejo Superior de Investigaciones Cientificas (CSIC); Universite de Gabes
推荐引用方式
GB/T 7714
Garofalo, Simone Pietro,Giannico, Vincenzo,Lorente, Beatriz,et al. Predicting carob tree physiological parameters under different irrigation systems using Random Forest and Planet satellite images[J],2024,15.
APA Garofalo, Simone Pietro.,Giannico, Vincenzo.,Lorente, Beatriz.,Garcia, Antonio Jose Garcia.,Vivaldi, Gaetano Alessandro.,...&Salcedo, Francisco Pedrero.(2024).Predicting carob tree physiological parameters under different irrigation systems using Random Forest and Planet satellite images.FRONTIERS IN PLANT SCIENCE,15.
MLA Garofalo, Simone Pietro,et al."Predicting carob tree physiological parameters under different irrigation systems using Random Forest and Planet satellite images".FRONTIERS IN PLANT SCIENCE 15(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Garofalo, Simone Pietro]的文章
[Giannico, Vincenzo]的文章
[Lorente, Beatriz]的文章
百度学术
百度学术中相似的文章
[Garofalo, Simone Pietro]的文章
[Giannico, Vincenzo]的文章
[Lorente, Beatriz]的文章
必应学术
必应学术中相似的文章
[Garofalo, Simone Pietro]的文章
[Giannico, Vincenzo]的文章
[Lorente, Beatriz]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。