CCPortal
DOI10.3390/rs16071125
Biomass Estimation with GNSS Reflectometry Using a Deep Learning Retrieval Model
Pilikos, Georgios; Clarizia, Maria Paola; Floury, Nicolas
发表日期2024
EISSN2072-4292
起始页码16
结束页码7
卷号16期号:7
英文摘要GNSS Reflectometry (GNSS-R) is an emerging technique for the remote sensing of the environment. Traditional GNSS-R bio-geophysical parameter retrieval algorithms and deep learning models utilize observables derived from only the peak power of the delay-Doppler maps (DDMs), discarding the rest. This reduces the data available, which potentially hinders estimation accuracy. In addition, reflections from water bodies dominate the signal amplitude, and using only the peak power in those areas is challenging. Motivated by all the above, we propose a novel deep learning retrieval model for biomass estimation that uses the full DDM of surface reflectivity. Experiments using CYGNSS data have illustrated the improvements achieved when using the full DDM of surface reflectivity. Our proposed model was able to estimate biomass, trained using the ESA Climate Change Initiative (CCI) biomass map, outperforming the model that used peak reflectivity. Global and regional analysis is provided along with an illustration of how biomass estimation is achieved when using the full DDM around water bodies. GNSS-R could become an efficient method for biomass monitoring with fast revisit times. However, an elaborate calibration is necessary for the retrieval models, to associate GNSS-R data with bio-geophysical parameters on the ground. To achieve this, further developments with improved training data are required, as well as work using in situ validation data. Nevertheless, using GNSS-R and deep learning retrieval models has the potential to enable fast and persistent biomass monitoring and help us better understand our changing climate.
英文关键词biomass; GNSS-R; deep learning; delay-Doppler map
语种英语
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001200822300001
来源期刊REMOTE SENSING
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/298675
作者单位European Space Agency
推荐引用方式
GB/T 7714
Pilikos, Georgios,Clarizia, Maria Paola,Floury, Nicolas. Biomass Estimation with GNSS Reflectometry Using a Deep Learning Retrieval Model[J],2024,16(7).
APA Pilikos, Georgios,Clarizia, Maria Paola,&Floury, Nicolas.(2024).Biomass Estimation with GNSS Reflectometry Using a Deep Learning Retrieval Model.REMOTE SENSING,16(7).
MLA Pilikos, Georgios,et al."Biomass Estimation with GNSS Reflectometry Using a Deep Learning Retrieval Model".REMOTE SENSING 16.7(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pilikos, Georgios]的文章
[Clarizia, Maria Paola]的文章
[Floury, Nicolas]的文章
百度学术
百度学术中相似的文章
[Pilikos, Georgios]的文章
[Clarizia, Maria Paola]的文章
[Floury, Nicolas]的文章
必应学术
必应学术中相似的文章
[Pilikos, Georgios]的文章
[Clarizia, Maria Paola]的文章
[Floury, Nicolas]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。