CCPortal
DOI10.1007/s13253-023-00596-5
Spatial Wildfire Risk Modeling Using a Tree-Based Multivariate Generalized Pareto Mixture Model
Cisneros, Daniela; Hazra, Arnab; Huser, Raphael
发表日期2024
ISSN1085-7117
EISSN1537-2693
英文摘要Wildfires pose a severe threat to the ecosystem and economy, and risk assessment is typically based on fire danger indices such as the McArthur Forest Fire Danger Index (FFDI) used in Australia. Studying the joint tail dependence structure of high-resolution spatial FFDI data is thus crucial for estimating current and future extreme wildfire risk. However, existing likelihood-based inference approaches are computationally prohibitive in high dimensions due to the need to censor observations in the bulk of the distribution. To address this, we construct models for spatial FFDI extremes by leveraging the sparse conditional independence structure of Husler-Reiss-type generalized Pareto processes defined on trees. These models allow for a simplified likelihood function that is computationally efficient. Our framework involves a mixture of tree-based multivariate generalized Pareto distributions with randomly generated tree structures, resulting in a flexible model that can capture nonstationary spatial dependence structures. We fit the model to summer FFDI data from different spatial clusters in Mainland Australia and 14 decadal windows between 1999 and 2022 to study local spatiotemporal variability with respect to the magnitude and extent of extreme wildfires. Our proposed method fits the margins and spatial tail dependence structure adequately and is helpful in providing extreme wildfire risk estimates. Our results identify a significant increase in spatially aggregated fire risk across a substantially large portion of Mainland Australia, which raises serious climatic concerns. Supplementary material to this paper is provided online.
英文关键词Climate change; Graphical model; Generalized Pareto process; Husler-Reiss distribution; McArthur forest fire danger index; Spatial extreme; Wildfire risk assessment
语种英语
WOS研究方向Life Sciences & Biomedicine - Other Topics ; Mathematical & Computational Biology ; Mathematics
WOS类目Biology ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号WOS:001168026700001
来源期刊JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/298565
作者单位King Abdullah University of Science & Technology; Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Kanpur
推荐引用方式
GB/T 7714
Cisneros, Daniela,Hazra, Arnab,Huser, Raphael. Spatial Wildfire Risk Modeling Using a Tree-Based Multivariate Generalized Pareto Mixture Model[J],2024.
APA Cisneros, Daniela,Hazra, Arnab,&Huser, Raphael.(2024).Spatial Wildfire Risk Modeling Using a Tree-Based Multivariate Generalized Pareto Mixture Model.JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS.
MLA Cisneros, Daniela,et al."Spatial Wildfire Risk Modeling Using a Tree-Based Multivariate Generalized Pareto Mixture Model".JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS (2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cisneros, Daniela]的文章
[Hazra, Arnab]的文章
[Huser, Raphael]的文章
百度学术
百度学术中相似的文章
[Cisneros, Daniela]的文章
[Hazra, Arnab]的文章
[Huser, Raphael]的文章
必应学术
必应学术中相似的文章
[Cisneros, Daniela]的文章
[Hazra, Arnab]的文章
[Huser, Raphael]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。