CCPortal
DOI10.3390/agronomy14030532
Are Supervised Learning Methods Suitable for Estimating Crop Water Consumption under Optimal and Deficit Irrigation?
Yamac, Sevim Seda; Kurtulus, Bedri; Memon, Azhar M.; Alomair, Gadir; Todorovic, Mladen
发表日期2024
EISSN2073-4395
起始页码14
结束页码3
卷号14期号:3
英文摘要This study examined the performance of random forest (RF), support vector machine (SVM) and adaptive boosting (AB) machine learning models used to estimate daily potato crop evapotranspiration adjusted (ETc-adj) under full irrigation (I100), 50% of full irrigation supply (I50) and rainfed cultivation (I0). Five scenarios of weather, crop and soil data availability were considered: (S1) reference evapotranspiration and precipitation, (S2) S1 and crop coefficient, (S3) S2, the fraction of total available water and root depth, (S4) S2 and total soil available water, and (S5) S3 and total soil available water. The performance of machine learning models was compared with the standard FAO56 calculation procedure. The most accurate ETc-adj estimates were observed with AB4 for I100, RF3 for I50 and AB5 for I0 with coefficients of determination (R2) of 0.992, 0.816 and 0.922, slopes of 1.004, 0.999 and 0.972, modelling efficiencies (EF) of 0.992, 0.815 and 0.917, mean absolute errors (MAE) of 0.125, 0.405 and 0.241 mm day-1, root mean square errors (RMSE) of 0.171, 0.579 and 0.359 mm day-1 and mean squared errors (MSE) of 0.029, 0.335 and 0.129 mm day-1, respectively. The AB model is suggested for ETc-adj prediction under I100 and I0 conditions, while the RF model is recommended under the I50 condition.
英文关键词irrigation; water stress; random forest; support vector machine; adaptive boosting; machine learning
语种英语
WOS研究方向Agriculture ; Plant Sciences
WOS类目Agronomy ; Plant Sciences
WOS记录号WOS:001191750500001
来源期刊AGRONOMY-BASEL
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/298325
作者单位Necmettin Erbakan University; Mugla Sitki Kocman University; King Fahd University of Petroleum & Minerals; King Faisal University; CIHEAM; CIHEAM BARI
推荐引用方式
GB/T 7714
Yamac, Sevim Seda,Kurtulus, Bedri,Memon, Azhar M.,et al. Are Supervised Learning Methods Suitable for Estimating Crop Water Consumption under Optimal and Deficit Irrigation?[J],2024,14(3).
APA Yamac, Sevim Seda,Kurtulus, Bedri,Memon, Azhar M.,Alomair, Gadir,&Todorovic, Mladen.(2024).Are Supervised Learning Methods Suitable for Estimating Crop Water Consumption under Optimal and Deficit Irrigation?.AGRONOMY-BASEL,14(3).
MLA Yamac, Sevim Seda,et al."Are Supervised Learning Methods Suitable for Estimating Crop Water Consumption under Optimal and Deficit Irrigation?".AGRONOMY-BASEL 14.3(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yamac, Sevim Seda]的文章
[Kurtulus, Bedri]的文章
[Memon, Azhar M.]的文章
百度学术
百度学术中相似的文章
[Yamac, Sevim Seda]的文章
[Kurtulus, Bedri]的文章
[Memon, Azhar M.]的文章
必应学术
必应学术中相似的文章
[Yamac, Sevim Seda]的文章
[Kurtulus, Bedri]的文章
[Memon, Azhar M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。