CCPortal
DOI10.3390/atmos15040418
Enhancing Air Quality Forecasting: A Novel Spatio-Temporal Model Integrating Graph Convolution and Multi-Head Attention Mechanism
Wang, Yumeng; Liu, Ke; He, Yuejun; Wang, Pengfei; Chen, Yuxin; Xue, Hang; Huang, Caiyi; Li, Lin
发表日期2024
EISSN2073-4433
起始页码15
结束页码4
卷号15期号:4
英文摘要Forecasting air quality plays a crucial role in preventing and controlling air pollution. It is particularly significant for improving preparedness for heavily polluted weather conditions and ensuring the health and safety of the population. In this study, a novel deep learning model for predicting air quality spatio-temporal variations is introduced. The model, named graph long short-term memory with multi-head attention (GLSTMMA), is designed to capture the temporal patterns and spatial relationships within multivariate time series data related to air quality. The GLSTMMA model utilizes a hybrid neural network architecture to effectively learn the complex dependencies and correlations present in the data. The extraction of spatial features related to air quality involves the utilization of a graph convolutional network (GCN) to collect air quality data based on the geographical distribution of monitoring sites. The resulting graph structure is imported into a long short-term memory (LSTM) network to establish a Graph LSTM unit, facilitating the extraction of temporal dependencies in air quality. Leveraging a Graph LSTM unit, an encoder-multiple-attention decoder framework is formulated to enable a more profound and efficient exploration of spatio-temporal correlation features within air quality time series data. The research utilizes the 2019-2021 multi-source air quality dataset of Qinghai Province for experimental assessment. The results indicate that the model effectively leverages the impact of multi-source data, resulting in optimal accuracy in predicting six air pollutants.
英文关键词air quality prediction; GCN; LSTM; multiple attention mechanism; Qinghai-Tibet Plateau
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS记录号WOS:001210264200001
来源期刊ATMOSPHERE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/297737
作者单位North China Institute of Aerospace Engineering; North China Institute of Aerospace Engineering
推荐引用方式
GB/T 7714
Wang, Yumeng,Liu, Ke,He, Yuejun,et al. Enhancing Air Quality Forecasting: A Novel Spatio-Temporal Model Integrating Graph Convolution and Multi-Head Attention Mechanism[J],2024,15(4).
APA Wang, Yumeng.,Liu, Ke.,He, Yuejun.,Wang, Pengfei.,Chen, Yuxin.,...&Li, Lin.(2024).Enhancing Air Quality Forecasting: A Novel Spatio-Temporal Model Integrating Graph Convolution and Multi-Head Attention Mechanism.ATMOSPHERE,15(4).
MLA Wang, Yumeng,et al."Enhancing Air Quality Forecasting: A Novel Spatio-Temporal Model Integrating Graph Convolution and Multi-Head Attention Mechanism".ATMOSPHERE 15.4(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Yumeng]的文章
[Liu, Ke]的文章
[He, Yuejun]的文章
百度学术
百度学术中相似的文章
[Wang, Yumeng]的文章
[Liu, Ke]的文章
[He, Yuejun]的文章
必应学术
必应学术中相似的文章
[Wang, Yumeng]的文章
[Liu, Ke]的文章
[He, Yuejun]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。