CCPortal
DOI10.1109/ACCESS.2023.3341156
ReefCoreSeg: A Clustering-Based Framework for Multi-Source Data Fusion for Segmentation of Reef Drill Cores
Deo, Ratneel; Webster, Jody M.; Salles, Tristan; Chandra, Rohitash
发表日期2024
ISSN2169-3536
起始页码12
卷号12
英文摘要Coral reefs are among the most biologically diverse and economically valuable ecosystems on Earth, but they are threatened by climate change. Understanding how reefs developed over geological timescales can provide important information about past environmental changes and their impacts on reef systems. Significant effort and capital have been invested in drilling and analyzing reef cores. Recognizing coral and sediment patterns visually from fossil reefs is a laborious task that demands domain expertise. In this paper, we present a machine learning-based framework that utilizes clustering and classification methods to fuse multiple sources of data for the segmentation and annotation of reef cores. The framework produces an annotated image of a reef core with six lithologies identified; massive corals, encrusted corals, coralline algae, microbialite, sand, and silt. We utilize reef cores recovered from Expedition 325 of the International Ocean Discovery Program (IODP) to the Great Barrier Reef. We use reef core image data and physical properties data to segment reef cores. We evaluate the framework using selected clustering and classification models. The results show that Gaussian mixture models can provide accurate segmentation of reef core image data, with a clear visual distinction between two major classes: massive corals and stromatolitic microbialites. Furthermore, we find that the random forest classifier provides the best annotations for the segmented reef core image data with an accuracy of 96%.
英文关键词Clustering; segmentation; multi-source data; classification; reef core analysis; Gaussian mixture models
语种英语
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001151612700001
来源期刊IEEE ACCESS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/297351
作者单位University of Sydney; University of New South Wales Sydney; University of New South Wales Sydney
推荐引用方式
GB/T 7714
Deo, Ratneel,Webster, Jody M.,Salles, Tristan,et al. ReefCoreSeg: A Clustering-Based Framework for Multi-Source Data Fusion for Segmentation of Reef Drill Cores[J],2024,12.
APA Deo, Ratneel,Webster, Jody M.,Salles, Tristan,&Chandra, Rohitash.(2024).ReefCoreSeg: A Clustering-Based Framework for Multi-Source Data Fusion for Segmentation of Reef Drill Cores.IEEE ACCESS,12.
MLA Deo, Ratneel,et al."ReefCoreSeg: A Clustering-Based Framework for Multi-Source Data Fusion for Segmentation of Reef Drill Cores".IEEE ACCESS 12(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Deo, Ratneel]的文章
[Webster, Jody M.]的文章
[Salles, Tristan]的文章
百度学术
百度学术中相似的文章
[Deo, Ratneel]的文章
[Webster, Jody M.]的文章
[Salles, Tristan]的文章
必应学术
必应学术中相似的文章
[Deo, Ratneel]的文章
[Webster, Jody M.]的文章
[Salles, Tristan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。