CCPortal
DOI10.1016/j.jclepro.2024.142141
Quantifying uncertainty in carbon emission estimation: Metrics and methodologies
Lee, Kunmo; Ko, Jeonghan; Jung, Seungho
发表日期2024
ISSN0959-6526
EISSN1879-1786
起始页码452
卷号452
英文摘要Carbon emissions are a significant driver of global climate change in today ' s world. A central concern in discussing carbon emissions is the level of uncertainty associated with them. This study aims to assess the feasibility of using the Mean Squared Error (MSE) as a point estimation measure and confidence interval (CI) as an interval estimation measure to quantify the uncertainty surrounding carbon emissions. To achieve this goal, the bootstrap and Markov Chain Monte Carlo (MCMC) sampling methods were used, utilizing both classical and Bayesian inference methods to uncover the true parameter value. In the context of Bayesian inference, a 2-chain MCMC method proved to be the optimal choice for generating posterior distributions and accurately estimating the true parameter of the distribution theta . The analysis also shows that, while a CI is valuable as an evaluative measure, it does not inherently provide a quantified form of uncertainty and should not be used for quantitative uncertainty assessment. Instead, the Relative Standard Error (RSE) emerges as a promising quantitative measure for capturing the uncertainty of theta , while the percentage uncertainty offers a qualitative perspective. These combined measures provide a comprehensive toolkit for computing and communicating the uncertainty in carbon emission and emission factor values. This reinforces a move towards incorporating transparent uncertainty metrics, ensuring that stakeholders have access to reliable and accurate carbon emission values.
英文关键词Carbon emission; Inference; Bootstrap; Markov chain Monte Carlo; Mean squared error; Relative standard error; Percentage uncertainty
语种英语
WOS研究方向Science & Technology - Other Topics ; Engineering ; Environmental Sciences & Ecology
WOS类目Green & Sustainable Science & Technology ; Engineering, Environmental ; Environmental Sciences
WOS记录号WOS:001229047500001
来源期刊JOURNAL OF CLEANER PRODUCTION
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/297013
作者单位Ajou University; Ajou University
推荐引用方式
GB/T 7714
Lee, Kunmo,Ko, Jeonghan,Jung, Seungho. Quantifying uncertainty in carbon emission estimation: Metrics and methodologies[J],2024,452.
APA Lee, Kunmo,Ko, Jeonghan,&Jung, Seungho.(2024).Quantifying uncertainty in carbon emission estimation: Metrics and methodologies.JOURNAL OF CLEANER PRODUCTION,452.
MLA Lee, Kunmo,et al."Quantifying uncertainty in carbon emission estimation: Metrics and methodologies".JOURNAL OF CLEANER PRODUCTION 452(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lee, Kunmo]的文章
[Ko, Jeonghan]的文章
[Jung, Seungho]的文章
百度学术
百度学术中相似的文章
[Lee, Kunmo]的文章
[Ko, Jeonghan]的文章
[Jung, Seungho]的文章
必应学术
必应学术中相似的文章
[Lee, Kunmo]的文章
[Ko, Jeonghan]的文章
[Jung, Seungho]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。