CCPortal
DOI10.1109/LGRS.2024.3353575
Using Deep Learning for Glacier Thickness Estimation at a Regional Scale
Uroz, Lorenzo Lopez; Yan, Yajing; Benoit, Alexandre; Rabatel, Antoine; Giffard-Roisin, Sophie; Lin-Kwong-Chon, Christophe
发表日期2024
ISSN1545-598X
EISSN1558-0571
起始页码21
卷号21
英文摘要Mountain glaciers play a critical role for mountain ecosystems and society with major concerns related to their future evolution and related water resources. Modeling glacier future evolution allows anticipating climate change impacts and informing policy decisions. It relies on accurate ice thickness estimation at regional scales. This letter proposes a deep learning-based approach in a supervised learning framework for ice thickness estimation at a regional scale from surface ice velocity measurements and a digital elevation model (DEM). A neural network model built upon a ResNet architecture is proposed based on the trade-off between the model complexity and the prediction efficiency. Promising results are obtained from data including 1400 glaciers in the Swiss Alps, highlighting the potential of deep learning-based approach for large-scale ice thickness estimation. The incorporation of expert's knowledge into the neural network model further helps refine the model prediction and improve the model relevance. The ice volume difference between the reference issued from ground penetrating radar (GPR) measurements and the predictions by the proposed neural network model varies between 0.5% and 16% of the reference volume. Larger ice volume difference is mainly related to over-deepening of the bedrock resulting from past larger extent of the glacier, which information is not included in the data.
英文关键词Deep learning; glacier flow velocity; ice thickness; neural network; regional scale; surface slope
语种英语
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001166715200002
来源期刊IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/296024
作者单位Universite Savoie Mont Blanc; INRAE; Communaute Universite Grenoble Alpes; Universite Grenoble Alpes (UGA); Institut National Polytechnique de Grenoble; Centre National de la Recherche Scientifique (CNRS); Institut de Recherche pour le Developpement (IRD); Communaute Universite Grenoble Alpes; Universite Grenoble Alpes (UGA); Centre National de la Recherche Scientifique (CNRS); Institut de Recherche pour le Developpement (IRD); Universite Gustave-Eiffel; Universite Savoie Mont Blanc
推荐引用方式
GB/T 7714
Uroz, Lorenzo Lopez,Yan, Yajing,Benoit, Alexandre,et al. Using Deep Learning for Glacier Thickness Estimation at a Regional Scale[J],2024,21.
APA Uroz, Lorenzo Lopez,Yan, Yajing,Benoit, Alexandre,Rabatel, Antoine,Giffard-Roisin, Sophie,&Lin-Kwong-Chon, Christophe.(2024).Using Deep Learning for Glacier Thickness Estimation at a Regional Scale.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,21.
MLA Uroz, Lorenzo Lopez,et al."Using Deep Learning for Glacier Thickness Estimation at a Regional Scale".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 21(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Uroz, Lorenzo Lopez]的文章
[Yan, Yajing]的文章
[Benoit, Alexandre]的文章
百度学术
百度学术中相似的文章
[Uroz, Lorenzo Lopez]的文章
[Yan, Yajing]的文章
[Benoit, Alexandre]的文章
必应学术
必应学术中相似的文章
[Uroz, Lorenzo Lopez]的文章
[Yan, Yajing]的文章
[Benoit, Alexandre]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。