Climate Change Data Portal
DOI | 10.1109/LGRS.2024.3353575 |
Using Deep Learning for Glacier Thickness Estimation at a Regional Scale | |
Uroz, Lorenzo Lopez; Yan, Yajing; Benoit, Alexandre; Rabatel, Antoine; Giffard-Roisin, Sophie; Lin-Kwong-Chon, Christophe | |
发表日期 | 2024 |
ISSN | 1545-598X |
EISSN | 1558-0571 |
起始页码 | 21 |
卷号 | 21 |
英文摘要 | Mountain glaciers play a critical role for mountain ecosystems and society with major concerns related to their future evolution and related water resources. Modeling glacier future evolution allows anticipating climate change impacts and informing policy decisions. It relies on accurate ice thickness estimation at regional scales. This letter proposes a deep learning-based approach in a supervised learning framework for ice thickness estimation at a regional scale from surface ice velocity measurements and a digital elevation model (DEM). A neural network model built upon a ResNet architecture is proposed based on the trade-off between the model complexity and the prediction efficiency. Promising results are obtained from data including 1400 glaciers in the Swiss Alps, highlighting the potential of deep learning-based approach for large-scale ice thickness estimation. The incorporation of expert's knowledge into the neural network model further helps refine the model prediction and improve the model relevance. The ice volume difference between the reference issued from ground penetrating radar (GPR) measurements and the predictions by the proposed neural network model varies between 0.5% and 16% of the reference volume. Larger ice volume difference is mainly related to over-deepening of the bedrock resulting from past larger extent of the glacier, which information is not included in the data. |
英文关键词 | Deep learning; glacier flow velocity; ice thickness; neural network; regional scale; surface slope |
语种 | 英语 |
WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:001166715200002 |
来源期刊 | IEEE GEOSCIENCE AND REMOTE SENSING LETTERS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/296024 |
作者单位 | Universite Savoie Mont Blanc; INRAE; Communaute Universite Grenoble Alpes; Universite Grenoble Alpes (UGA); Institut National Polytechnique de Grenoble; Centre National de la Recherche Scientifique (CNRS); Institut de Recherche pour le Developpement (IRD); Communaute Universite Grenoble Alpes; Universite Grenoble Alpes (UGA); Centre National de la Recherche Scientifique (CNRS); Institut de Recherche pour le Developpement (IRD); Universite Gustave-Eiffel; Universite Savoie Mont Blanc |
推荐引用方式 GB/T 7714 | Uroz, Lorenzo Lopez,Yan, Yajing,Benoit, Alexandre,et al. Using Deep Learning for Glacier Thickness Estimation at a Regional Scale[J],2024,21. |
APA | Uroz, Lorenzo Lopez,Yan, Yajing,Benoit, Alexandre,Rabatel, Antoine,Giffard-Roisin, Sophie,&Lin-Kwong-Chon, Christophe.(2024).Using Deep Learning for Glacier Thickness Estimation at a Regional Scale.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,21. |
MLA | Uroz, Lorenzo Lopez,et al."Using Deep Learning for Glacier Thickness Estimation at a Regional Scale".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 21(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。