CCPortal
DOI10.3390/w16040517
Quantifying Uncertainty in Runoff Simulation According to Multiple Evaluation Metrics and Varying Calibration Data Length
Ziarh, Ghaith Falah; Kim, Jin Hyuck; Song, Jae Yeol; Chung, Eun-Sung
发表日期2024
EISSN2073-4441
起始页码16
结束页码4
卷号16期号:4
英文摘要In this study, the uncertainty in runoff simulations using hydrological models was quantified based on the selection of five evaluation metrics and calibration data length. The calibration data length was considered to vary from 1 to 11 years, and runoff analysis was performed using a soil and water assessment tool (SWAT). SWAT parameter optimization was then performed using R-SWAT. The results show that the uncertainty was lower when using a calibration data length of five to seven years, with seven years achieving the lowest uncertainty. Runoff simulations using a calibration data length of more than seven years yielded higher uncertainty overall but lower uncertainty for extreme runoff simulations compared to parameters with less than five years of calibration data. Different uncertainty evaluation metrics show different levels of uncertainty, which means it is necessary to consider multiple evaluation metrics rather than relying on any one single metric. Among the evaluation metrics, the Nash-Sutcliffe model efficiency coefficient (NSE) and normalized root-mean-squared error (NRMSE) had large uncertainties at short calibration data lengths, whereas the Kling-Gupta efficiency (KGE) and Percent Bias (Pbias) had large uncertainties at long calibration data lengths.
英文关键词uncertainty quantification; evaluation metrics; calibration data length
语种英语
WOS研究方向Environmental Sciences & Ecology ; Water Resources
WOS类目Environmental Sciences ; Water Resources
WOS记录号WOS:001172315300001
来源期刊WATER
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/294207
作者单位Seoul National University of Science & Technology
推荐引用方式
GB/T 7714
Ziarh, Ghaith Falah,Kim, Jin Hyuck,Song, Jae Yeol,et al. Quantifying Uncertainty in Runoff Simulation According to Multiple Evaluation Metrics and Varying Calibration Data Length[J],2024,16(4).
APA Ziarh, Ghaith Falah,Kim, Jin Hyuck,Song, Jae Yeol,&Chung, Eun-Sung.(2024).Quantifying Uncertainty in Runoff Simulation According to Multiple Evaluation Metrics and Varying Calibration Data Length.WATER,16(4).
MLA Ziarh, Ghaith Falah,et al."Quantifying Uncertainty in Runoff Simulation According to Multiple Evaluation Metrics and Varying Calibration Data Length".WATER 16.4(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ziarh, Ghaith Falah]的文章
[Kim, Jin Hyuck]的文章
[Song, Jae Yeol]的文章
百度学术
百度学术中相似的文章
[Ziarh, Ghaith Falah]的文章
[Kim, Jin Hyuck]的文章
[Song, Jae Yeol]的文章
必应学术
必应学术中相似的文章
[Ziarh, Ghaith Falah]的文章
[Kim, Jin Hyuck]的文章
[Song, Jae Yeol]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。