Climate Change Data Portal
DOI | 10.1071/BT23069 |
Seventy-five years of vegetation change after fire in Tasmanian alpine heathland | |
Sorensen, Ellen-Rose; Kirkpatrick, Jamie B. | |
发表日期 | 2024 |
ISSN | 0067-1924 |
EISSN | 1444-9862 |
起始页码 | 72 |
结束页码 | 3 |
卷号 | 72期号:3 |
英文摘要 | Context Alpine ecosystems are threatened by warming and an associated increase in fire frequency. There is a gap in our knowledge of succession in Tasmanian alpine heath more than 50 years after fire. The literature suggests that the alpine successional progression usually involves decreasing rates of change, decreasing differences among fire ages, ongoing transitions among shrub species, ongoing transitions from some lifeforms/species to others, and that warming results in increases in species richness.Aims We test for these tendencies up to 75 years from fire in alpine vegetation on kunanyi/Mount Wellington, Tasmania, Australia.Methods We documented the changes in vegetation structure and composition between 1998 and 2022 in plots on either side of an alpine fire boundary in the alpine heathland and used earlier data and observations to extend the record of change after fire to 75 years. We put these changes in the context of the only area of alpine vegetation that was not burnt in 1947 or later.Key results The area last burnt in 1947 exhibited declines in all lifeform covers between 1998 and 2022. All lifeforms except tall shrubs and mat shrubs declined in cover in the area last burnt in 1962. By 2022, shrub cover in the 1962-burnt area had not attained equivalence with the area last burnt in 1947. Herbs had the most dramatic decline in both fire-age classes. There were few shrub seedlings in 2022. All but six taxa, three being exotic, were observed in both the plots and previous broader surveys. Increases in species richness caused by the upward migration of lower-elevation species were not observed. The long-unburnt patch lacked the major dominant of the 1947-burnt plots, namely Orites acicularis, and was dominated by a gymnosperm absent from most of the mountain.Conclusions Succession follows the initial floristic composition model. The differences in trajectories from the 1947 and 1962 fires could possibly be due to desiccation or abrasion damage from increasing wind speeds and temperatures. There are strong indications of further potential change in the absence of fire.Implications The slow rate of recovery and its on-going nature emphasise the importance of keeping fire out of this vegetation type. We compared vegetation in alpine heath plots that regenerated after fires of 1947 and 1962. Herbs and graminoids plummeted in cover and species richness between 1998 and 2022, whereas shrubs continued to increase in cover in the 1962-burnt, but decreased in the 1947-burnt area. Shrubs exhibited compositional change up to 75 years after fire. A failure of the shrub layer to be more similar between the fire years might be due to stronger winds and higher temperatures. A predicted climate change-induced increase in diversity did not occur. Image by Jamie Kirkpatrick. |
英文关键词 | alpine heathland; climate change; fire succession; floristics; long-term dynamics; slope effects; vegetation structure |
语种 | 英语 |
WOS研究方向 | Plant Sciences |
WOS类目 | Plant Sciences |
WOS记录号 | WOS:001216393000001 |
来源期刊 | AUSTRALIAN JOURNAL OF BOTANY
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/293900 |
作者单位 | University of Tasmania |
推荐引用方式 GB/T 7714 | Sorensen, Ellen-Rose,Kirkpatrick, Jamie B.. Seventy-five years of vegetation change after fire in Tasmanian alpine heathland[J],2024,72(3). |
APA | Sorensen, Ellen-Rose,&Kirkpatrick, Jamie B..(2024).Seventy-five years of vegetation change after fire in Tasmanian alpine heathland.AUSTRALIAN JOURNAL OF BOTANY,72(3). |
MLA | Sorensen, Ellen-Rose,et al."Seventy-five years of vegetation change after fire in Tasmanian alpine heathland".AUSTRALIAN JOURNAL OF BOTANY 72.3(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。